H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood

Department of Biochemistry and Molecular Biology, University of Florida, PO Box 103633, Gainesville, FL 32610, USA.
Blood (Impact Factor: 10.45). 03/2010; 115(10):2028-2037. DOI: 10.1182/blood-2009-07-236059

ABSTRACT Histone modifications play an important role in the process of transcription. However, in contrast to lysine methylation, the role of arginine methylation in chromatin structure and transcription has been underexplored. The globin genes are regulated by a highly organized chromatin structure that juxtaposes the locus control region (LCR) with downstream globin genes. We report here that the targeted recruitment of asymmetric dimethyl H4R3 catalyzed by PRMT1 (protein arginine methyltransferase 1) facilitates histone H3 acetylation on Lys9/Lys14. Dimethyl H4R3 provides a binding surface for P300/CBP-associated factor (PCAF) and directly enhances histone H3 acetylation in vitro. We show that these active modifications are essential for efficient interactions between the LCR and the beta(maj)-promoter as well as transcription of the beta-globin gene. Furthermore, knockdown (KD) of PRMT1 by RNA interference in erythroid progenitor cells prevents histone acetylation, enhancer and promoter interaction, and recruitment of transcription complexes to the active beta-globin promoter. Reintroducing rat PRMT1 into the PRMT1 KD MEL cells rescues PRMT1 binding, beta-globin transcription, and erythroid differentiation. Taken together, our data suggest that PRMT1-mediated dimethyl H4R3 facilitates histone acetylation and enhancer/promoter communications, which lead to the efficient recruitment of transcription preinitiation complexes to active promoters.

Download full-text


Available from: Bhavita Patel, Apr 02, 2014
30 Reads
  • Source
    • "How proximity between the LCR and the adult β-globin gene is established is not known but requires proteins known to interact with GATA-1 or the GATA-1/Tal1 protein complex, Fog1 and LdB1 (21,24). In addition, the histone arginine methyltransferase Prmt1, which is recruited to the adult βmaj-globin gene promoter by USF, has been shown to be required for establishing proximity between the LCR and the adult globin promoter (44). Finally, the adenosine triphosphate-dependent chromatin remodeling enzyme Brg1 has also been shown to mediate proximity between the adult β-globin gene and the LCR (51). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental stage-specific expression of the β-type globin genes is regulated by many cis- and trans-acting components. The adult β-globin gene contains an E-box located 60 bp downstream of the transcription start site that has been shown to bind transcription factor upstream stimulatory factor (USF) and to contribute to efficient in vitro transcription. We expressed an artificial zinc finger DNA-binding domain (ZF-DBD) targeting this site (+60 ZF-DBD) in murine erythroleukemia cells. Expression of the +60 ZF-DBD reduced the recruitment and elongation of RNA polymerase II (Pol II) at the adult β-globin gene and at the same time increased the binding of Pol II at locus control region (LCR) element HS2, suggesting that Pol II is transferred from the LCR to the globin gene promoters. Expression of the +60 ZF-DBD also reduced the frequency of interactions between the LCR and the adult β-globin promoter. ChIP-exonuclease-sequencing revealed that the +60ZF-DBD was targeted to the adult β-globin downstream promoter and that the binding of the ZF-DBD caused alterations in the association of USF2 containing protein complexes. The data demonstrate that targeting a ZF-DBD to the adult β-globin downstream promoter region interferes with the LCR-mediated recruitment and activity of Pol II.
    Nucleic Acids Research 02/2014; 42(7). DOI:10.1093/nar/gku107 · 9.11 Impact Factor
  • Source
    • "One of the known mechanisms through which PRMT1 activates transcription is by methylating the histone H4 on Arg3, which permits the subsequent acetylation of histones. This is demonstrated in the retinoic acid-induced expression of transglutaminase type 2 (TGM2) gene [34] and the DMSO-induced expression of β-globin gene [16]. The possibility that PRMT1-mediated up-regulation of transcription during erythroid differentiation involves histone H4 Arg3 methylation is not ruled out. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein arginine methylation is emerging as a pivotal posttranslational modification involved in regulating various cellular processes; however, its role in erythropoiesis is still elusive. Erythropoiesis generates circulating red blood cells which are vital for body activity. Deficiency in erythroid differentiation causes anemia which compromises the quality of life. Despite extensive studies, the molecular events regulating erythropoiesis are not fully understood. This study showed that the increase in protein arginine methyltransferase 1 (PRMT1) levels, via transfection or protein transduction, significantly promoted erythroid differentiation in the bipotent human K562 cell line as well as in human primary hematopoietic progenitor CD34+ cells. PRMT1 expression enhanced the production of hemoglobin and the erythroid surface marker glycophorin A, and also up-regulated several key transcription factors, GATA1, NF-E2 and EKLF, which are critical for lineage-specific differentiation. The shRNA-mediated knockdown of PRMT1 suppressed erythroid differentiation. The methyltransferase activity-deficient PRMT1G80R mutant failed to stimulate differentiation, indicating the requirement of arginine methylation of target proteins. Our results further showed that a specific isoform of p38 MAPK, p38α, promoted erythroid differentiation, whereas p38β did not play a role. The stimulation of erythroid differentiation by PRMT1 was diminished in p38α- but not p38β-knockdown cells. PRMT1 appeared to act upstream of p38α, since expression of p38α still promoted erythroid differentiation in PRMT1-knockdown cells, and expression of PRMT1 enhanced the activation of p38 MAPK. Importantly, we showed for the first time that PRMT1 was associated with p38α in cells by co-immunoprecipitation and that PRMT1 directly methylated p38α in in vitro methylation assays. Taken together, our findings unveil a link between PRMT1 and p38α in regulating the erythroid differentiation program and provide evidence suggesting a novel regulatory mechanism for p38α through arginine methylation.
    PLoS ONE 03/2013; 8(3):e56715. DOI:10.1371/journal.pone.0056715 · 3.23 Impact Factor
  • Source
    • "[9] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of histone acetylation in plants started with protein purification and sequencing, with gel analysis and the use of radioactive tracers. In alfalfa, acid urea Triton gel electrophoresis and in vivo labeling with tritated acetate and lysine quantified dynamic acetylation of core histones and identified the replication-coupled and -independent expression patterns of the histone H3.1 and H3.2 variants. Pulse-chase analyses demonstrated protein turnover of newly synthesized histone H3.2 and thereby identified the replacement H3 histones of plants which maintain the nucleosome density of transcribed chromatin. Sequence analysis of histone H4 revealed acetylation of lysine 20, a site typically methylated in animals and yeasts. Histone deacetylase inhibitors butyrate and trichostatin A are metabolized in alfalfa, but loss of TSA is slow, allowing its use to induce transient hyperacetylation of histones H2B, H4 and H3. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.
    Biochimica et Biophysica Acta 02/2011; 1809(8):353-9. DOI:10.1016/j.bbagrm.2011.02.005 · 4.66 Impact Factor
Show more