Heterogeneous in vivo expression of clumping factor A and capsular polysaccharide by Staphylococcus aureus: Implications for vaccine design

Wyeth Vaccine Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
Vaccine (Impact Factor: 3.49). 03/2009; 27(25-26):3276-80. DOI: 10.1016/j.vaccine.2009.01.062
Source: PubMed

ABSTRACT There is a clear unmet medical need for a vaccine that would prevent infections from Staphylococcus aureus (S. aureus). To validate antigens as potential vaccine targets it has to be demonstrated that the antigens are expressed in vivo. Using murine bacteremia and wound infection models, we demonstrate that the expression of clumping factor A (ClfA) and capsular polysaccharide antigens are heterogeneous and dependent on the challenge strains examined and the in vivo microenvironment. We also demonstrate opsonophagocitic activity mediated by either antigen is not impeded by the presence of the other antigen. The data presented in this report support a multiantigen approach for the development of a prophylactic S. aureus vaccine to ensure broad coverage against this versatile pathogen.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called "recalcitrance" and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.
    Microbiology and molecular biology reviews: MMBR 09/2014; 78(3):510-543. DOI:10.1128/MMBR.00013-14 · 15.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus is a versatile pathogen of medical significance, using multiple virulence factors to cause disease. A prophylactic S. aureus 4-antigen (SA4Ag) vaccine comprising capsular polysaccharide (types 5 and 8) conjugates, clumping factor A (ClfA) and manganese transporter C (MntC) is under development. This study was designed to characterize S. aureus isolates recovered from infected patients and also to investigate approaches for examining expression of S. aureus vaccine candidates and the host response during human infection. Confirmation of antigen expression in different disease states is important to support the inclusion of these antigens in a prophylactic vaccine. Hospitalized patients with diagnosed S. aureus wound (27) or bloodstream (24) infections were enrolled. Invasive and nasal carriage S. aureus isolates were recovered and characterized for genotypic diversity. S. aureus antigen expression was evaluated directly by real-time, quantitative, reverse-transcriptase PCR (qRT-PCR) analysis and indirectly by serology using a competitive Luminex immunoassay. Study isolates were genotypically diverse and all had the genes encoding the antigens present in the SA4Ag vaccine. S. aureus nasal carriage was detected in 55% of patients, and in those subjects 64% of the carriage isolates matched the invasive strain. In swab samples with detectable S. aureus triosephosphate isomerase housekeeping gene expression, RNA transcripts encoding the S. aureus virulence factors ClfA, MntC, and capsule polysaccharide were detected by qRT-PCR. Antigen expression was indirectly confirmed by increases in antibody titer during the course of infection from acute to convalescent phase. Demonstration of bacterial transcript expression together with immunological response to the SA4Ag antigens in a clinically relevant patient population provides support for inclusion of these antigens in a prophylactic vaccine.
    PLoS ONE 02/2015; 10(2):e0116945. DOI:10.1371/journal.pone.0116945 · 3.53 Impact Factor