Article

Intraoperative monitoring of visual evoked potential: introduction of a clinically useful method Clinical article

Department of Neurosurgery, Fukushima Medical University, Hikarigaoka, Fukushima, Japan.
Journal of Neurosurgery (Impact Factor: 3.15). 03/2009; 112(2):273-84. DOI: 10.3171/2008.9.JNS08451
Source: PubMed

ABSTRACT To obtain a clinically useful method of intraoperative monitoring of visual evoked potentials (VEPs), the authors developed a new light-stimulating device and introduced electroretinography (ERG) to ascertain retinal light stimulation after induction of venous anesthesia.
The new stimulating device consists of 16 red light-emitting diodes embedded in a soft silicone disc to avoid deviation of the light axis after frontal scalp-flap reflection. After induction of venous anesthesia with propofol, the authors performed ERG and VEP recording in 100 patients (200 eyes) who were at intraoperative risk for visual impairment.
Stable ERG and VEP recordings were obtained in 187 eyes. In 12 eyes, stable ERG data were recorded but VEPs could not be obtained, probably because all 12 eyes manifested severe preoperative visual dysfunction. The disappearance of ERG data and VEPs in the 13th eye after frontal scalp-flap reflection suggested technical failure attributable to deviation of the light axis. The criterion for amplitude changes was defined as a 50% increase or decrease in amplitude compared with the control level. In 1 of 187 eyes the authors observed an increase in intraoperative amplitude and postoperative visual function improvement. Of 169 eyes without amplitude changes, 17 manifested improved visual function postoperatively, 150 showed no change, and 2 worsened (1 patient with a temporal tumor developed a slight visual field defect in both eyes). Of 3 eyes with intraoperative VEP deterioration and subsequent recovery upon changing the operative maneuver, 1 improved and 2 exhibited no change. The VEP amplitude decreased without subsequent recovery to 50% of the control level in 14 eyes, and all of these developed various degrees of postoperative deterioration of visual function.
With the strategy introduced here it is possible to record intraoperative VEPs in almost all patients except in those with severe visual dysfunction. In some patients, postoperative visual deterioration can be avoided or minimized by intraoperative VEP recording. All patients without an intraoperative decrease in the VEP amplitude were without severe postoperative deterioration in visual function, suggesting that intraoperative VEP monitoring may contribute to prevent postoperative visual dysfunction.

0 Followers
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Postoperative visual outcome is a major concern in transsphenoidal surgery (TSS). Intraoperative visual evoked potential (VEP) monitoring has been reported to have little usefulness in predicting postoperative visual outcome. To re-evaluate its usefulness, we adapted a high-power light-stimulating device with electroretinography (ERG) to ascertain retinal light stimulation. Intraoperative VEP monitoring was conducted in TSSs in 33 consecutive patients with sellar and parasellar tumors under total venous anesthesia. The detectability rates of N75, P100, and N135 were 94.0%, 85.0%, and 79.0%, respectively. The mean latencies and amplitudes of N75, P100, and N135 were 76.8 ± 6.4 msec and 4.6 ± 1.8 μV, 98.0 ± 8.6 msec and 5.0 ± 3.4 μV, and 122.1 ± 16.3 msec and 5.7 ± 2.8 μV, respectively. The amplitude was defined as the voltage difference from N75 to P100 or P100 to N135. The criterion for amplitude changes was defined as a > 50% increase or 50% decrease in amplitude compared to the control level. The surgeon was immediately alerted when the VEP changed beyond these thresholds, and the surgical manipulations were stopped until the VEP recovered. Among the 28 cases with evaluable VEP recordings, the VEP amplitudes were stable in 23 cases and transiently decreased in 4 cases. In these 4 cases, no postoperative vision deterioration was observed. One patient, whose VEP amplitude decreased without subsequent recovery, developed vision deterioration. Intraoperative VEP monitoring with ERG to ascertain retinal light stimulation by the new stimulus device was reliable and feasible in preserving visual function in patients undergoing TSS.
    Neurologia medico-chirurgica 07/2014; 54(8). DOI:10.2176/nmc.oa.2014-0023 · 0.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flash visual evoked potentials (FVEPs) are often irreproducible during surgery. We assessed the relationship between intraoperative FVEP reproducibility and EEG amplitude. Left then right eyes were stimulated by goggle light emitting diodes, and FVEPs were recorded from Oz-Fz' (International 10-20 system) in 12 patients. Low cut filters were ≤5 Hz in all patients; two patients also had recordings using 10 and 30 Hz. The reproducibility of FVEP and the amplitude of the concomitant EEG from C4'-Fz were measured. Nine patients had low amplitude EEG (<30 μV); reproducible FVEPs were obtained from all eyes with normal pre-operative vision. The other three patients had high amplitude EEG (>50 μV); FVEPs were absent from three of four eyes with normal pre-operative vision (the other normal eye had a present but irreproducible FVEP). Raising the low cut filter to 10 and 30 Hz (in two patients) progressively reduced EEG and FVEP amplitude, reduced amplifier blocking time and improved FVEP reproducibility. FVEPs were more reproducible in the presence of low amplitude EEG than high amplitude EEG. This is the first report describing the effect of EEG amplitude on FVEP reproducibility during surgery.
    International Journal of Clinical Monitoring and Computing 11/2013; 28(3). DOI:10.1007/s10877-013-9532-8 · 1.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent developments of new devices and advances in anesthesiology have greatly improved the utility and accuracy of intraoperative neurophysiological monitoring (IOM). Herein, we review the basic principles of the electrophysiological methods employed under IOM in the operating room. These include motor evoked potentials, somatosensory evoked potentials, electroencephalography, electromyography, brainstem auditory evoked potentials, and visual evoked potentials. Most of these techniques have certain limitations and their utility is still being debated. In this review, we also discuss the optimal stimulation/recording method for each of these modalities during individual surgeries as well as the diverse criteria for alarm signs.
    Journal of Korean medical science 09/2013; 28(9):1261-1269. DOI:10.3346/jkms.2013.28.9.1261 · 1.25 Impact Factor