Re-evaluating dorsolateral prefrontal cortex activation during working memory in schizophrenia.

Department of Psychology, UCLA, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA.
Schizophrenia Research (Impact Factor: 4.43). 03/2009; 108(1-3):143-50. DOI: 10.1016/j.schres.2008.12.025
Source: PubMed

ABSTRACT Previous neuroimaging studies of working memory (WM) in schizophrenia have generated conflicting findings of hypo- and hyper-frontality, discrepancies potentially driven by differences in task difficulty and/or performance. This study proposes and tests a new model of the performance-activation relationship in schizophrenia by combining changes by load with overall individual differences in performance. Fourteen patients with recent-onset schizophrenia and eighteen controls underwent functional magnetic resonance imaging while performing a parametric verbal WM task. Group level differences followed a linear "cross-over" pattern, such that in controls, activation in the dorsolateral prefrontal cortex (DLPFC) increased as performance decreased, while patients showed the opposite. Overall, low performing patients were hypoactive and high performing patients hyperactive relative to controls. However, patients and controls showed similar functions of activation by load in which activation rises with task difficulty but levels off or slightly decreases at higher loads. Moreover, across all loads and at their own WM capacity, higher performing patients showed greater DLPFC activation than controls, while lower performing patients activated least. This study establishes a novel framework for predicting the relationship between functional activation and WM performance by combining changes of activation by WM load occurring within each subject with the overall differences in activation associated with general WM performance. Essentially, increasing task difficulty correlates asymptotically with increasing activation in all subjects, but depending on their behavioral performance, patients show overall hyper- versus hypofrontality, a pattern potentially derived from individual differences in underlying cellular changes that may relate to levels of functional disability.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). There were no significant differences in long-interval cortical inhibition across all three groups in the motor cortex. These results demonstrate that long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex are specific to patients with schizophrenia and are not a generalized deficit that is shared by disorders of severe psychopathology. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email:
    Brain 12/2014; · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In schizophrenia, executive functions are impaired and are associated with altered activation of prefrontal areas. We used H2[15]O PET to examine patients with schizophrenia and matched controls on a random number generation (RNG) task and a control counting (COUNT) task. To assess the effects of increasing task demand, both tasks were performed at three different rates (intervals 1, 2 or 3 s). Both groups showed a significant increase in the nonrandomness of responses at faster rates of RNG. Despite similar performances, patients but not controls showed higher activation of the right dorsolateral prefrontal cortex (DLPFC) and atypically reduced activation of the right anterior cingulate gyrus and the right medial frontal gyrus in RNG compared with COUNT, whereas only for controls, activation of the left DLPFC was increased and activation of the right superior temporal gyrus and the right superior frontal gyrus was reduced in the same comparison. Whereas for the controls several cortical areas including the bilateral superior temporal gyrus and the bilateral DLPFC, together with the right cerebellum, showed significant changes in regional cerebral blood flow with faster or slower rates, patients with schizophrenia showed rate-dependent changes only in the left cerebellum. In conclusion, the patients' failure to modulate cortical activation with changing demands of rate, particularly in prefrontal areas and in the cerebellum, and even when performance is similar to that in healthy controls, is a characteristic of their abnormal pattern of executive processing.
    Neuroreport 11/2014; 25(16):1308-1315. · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Working memory (WM) deficit is an important component of impaired cognition in schizophrenia. However, between-studies inconsistencies as to the specific functional substrate imply that inter-individual variability (IIV) in the WM performance is associated with IIV in brain activity in schizophrenia. To examine the neural substrate of this WM IIV, we studied whether the neural mechanisms that underlie individual differences in WM capacity are the same in schizophrenia patients and healthy people. We correlated the IIV of the task-evoked brain activity and task performance during an n-back WM task with the IIV of the moment-to-moment variability in intrinsic resting-state activity, as measured by the amplitude of low-frequency fluctuations (ALFFs) and further compared this relationship between 17 patients with first-episode schizophrenia (FES) and 18 healthy controls. Between-group comparisons of the correlation patterns indicated aberrant ALFF-WM activation correlations and ALFF-WM performance correlations in the FES patients, but no significant changes were detected in any single measurement of these three characteristics. Specifically, we found increased positive ALFF-WM activation correlations in the bilateral lateral prefrontal cortices, posterior parietal cortices and fusiform gyri in the FES patients. We also observed significant increases in positive ALFF-WM performance correlations in the bilateral ventromedial prefrontal cortices in the FES patients. This hyper-coupling between the ALFF and fMRI measures during a WM task may indicate that it was difficult for the patients to detach themselves from one state to transition to another and suggests that the inefficient cortical function in schizophrenia stems from the intrinsic functional architecture of the brain.
    Schizophrenia Research 08/2014; · 4.43 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014