Article

Mycobacterium tuberculosis glycoproteomics based on ConA-lectin affinity capture of mannosylated proteins.

Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico.
Journal of Proteome Research (Impact Factor: 5). 03/2009; 8(2):721-33.
Source: PubMed

ABSTRACT A Mycobacterium tuberculosis culture filtrate enriched with mannose-containing proteins was resolved by 2-DE gel. After ConA ligand blotting, 41 proteins were identified by mass spectrometry as putative glycoproteins with 34 of them new probably mannosylated proteins. These results contribute to the construction of the ConA affinity glycoprotein database of M. tuberculosis, and provide useful information for understanding the biological role of glycoproteins in mycobacteria.

0 Bookmarks
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) continues being one of the diseases having the greatest mortality rates around the world, 8.7 million cases having been reported in 2011. An efficient vaccine against TB having a great impact on public health is an urgent need. Usually, selecting antigens for vaccines has been based on proteins having immunogenic properties for patients suffering TB and having had promising results in mice and non-human primates. Our approach has been based on a functional approach involving the pathogen–host interaction in the search for antigens to be included in designing an efficient, minimal, subunit-based anti-TB vaccine. This means that Mycobacterium tuberculosis has mainly been involved in studies and that lipoproteins represent an important kind of protein on the cell envelope which can also contribute towards this pathogen's virulence. This study has assessed the expression of four lipoproteins from M. tuberculosis H37Rv, that is, Rv1411c (LprG), Rv1911c (LppC), Rv2270 (LppN) and Rv3763 (LpqH), and the possible biological activity of peptides derived from these. Five peptides were found for these proteins which had high specific binding to both alveolar A549 epithelial cells and U937 monocyte-derived macrophages which were able to significantly inhibit mycobacterial entry to these cells in vitro.
    Chemical Biology &amp Drug Design 07/2014; · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lprG-p55 operon of Mycobacterium tuberculosis and Mycobacterium bovis is involved in the transport of toxic compounds. P55 is an efflux pump that provides resistance to several drugs, while LprG is a lipoprotein that modulates the host's immune response against mycobacteria. The knockout mutation of this operon severely reduces the replication of both mycobacterial species during infection in mice and increases susceptibility to toxic compounds. In order to gain insight into the function of LprG in the Mycobacterium avium complex, in this study, we assayed the effect of the deletion of lprG gene in the D4ER strain of Mycobacterium avium subsp. avium. The replacement of lprG gene with a hygromycin cassette caused a polar effect on the expression of p55. Also, a twofold decrease in ethidium bromide susceptibility was observed and the resistance to the antibiotics rifampicin, amikacin, linezolid, and rifabutin was impaired in the mutant strain. In addition, the mutation decreased the virulence of the bacteria in macrophages in vitro and in a mice model in vivo. These findings clearly indicate that functional LprG and P55 are necessary for the correct transport of toxic compounds and for the survival of MAA in vitro and in vivo.
    BioMed Research International 01/2014; 2014:809585. · 2.71 Impact Factor
  • Source
    Frontiers in Cellular and Infection Microbiology 09/2014; 4(133). · 2.62 Impact Factor