Article

Simian T-Lymphotropic Virus Diversity among Nonhuman Primates, Cameroon

Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Emerging Infectious Diseases (Impact Factor: 7.33). 03/2009; 15(2):175-84. DOI: 10.3201/eid1502.080584
Source: PubMed

ABSTRACT Cross-species transmission of retroviruses is common in Cameroon. To determine risk for simian T-cell lymphotropic virus (STLV) transmission from nonhuman primates to hunters, we examined 170 hunter-collected dried blood spots (DBS) from 12 species for STLV. PCR with generic tax and group-specific long terminal repeat primers showed that 12 (7%) specimens from 4 nonhuman primate species were infected with STLV. Phylogenetic analyses showed broad diversity of STLV, including novel STLV-1 and STLV-3 sequences and a highly divergent STLV-3 subtype found in Cercopithecus mona and C. nictitans monkeys. Screening of peripheral blood mononuclear cell DNA from 63 HTLV-seroreactive, PCR-negative hunters did not identify human infections with this divergent STLV-3. Therefore, hunter-collected DBS can effectively capture STLV diversity at the point where pathogen spillover occurs. Broad screening using this relatively easy collection strategy has potential for large-scale monitoring of retrovirus cross-species transmission among highly exposed human populations.

Full-text

Available from: Jean Carr, May 22, 2015
0 Followers
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human T cell leukemia viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or HTLV-4. HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis, whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-κB (nuclear factor kappa-B) pathway, and interactions with host factors.
    Frontiers in Microbiology 09/2013; 4:271. DOI:10.3389/fmicb.2013.00271 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HTLV-1 and HTLV-2 encode auxiliary proteins that play important roles in viral replication, viral latency and immune escape. The presence of auxiliary proteins-encoding ORFs in HTLV-3, the latest HTLV to be discovered is unknown. STLV-3 viruses are almost identical to HTLV-3. Given the lack of HTLV-3-infected cell lines, we took advantage of STLV-3-infected cells and of an STLV-3 molecular clone to search for the presence of auxiliary transcripts. Using RT-PCR, we first uncovered the presence of three unknown viral mRNAs encoding putative proteins of 5, 8 and 9 kDa, and confirmed the presence of the previously reported RorfII transcript. The existence of those viral mRNAs was confirmed using splice site-specific RT-PCR in ex vivo samples. We showed that p5 is distributed throughout the cell and does not colocalize with a specific organelle. p9 localization is similar to that of HTLV-1 p12 and induced a strong decrease in calreticulin signal, similar to HTLV-1 p12. Despite that p8, RorfII and Rex-3 share an N-terminal sequence that is predicted to contain a nucleolar localization signal, only p8 is found in the nucleolus. p8 location in the nucleolus is linked to a bipartite NoLS. p8, and to a lesser extent p9, repressed viral expression but did not alter Rex-3-dependent mRNA export. Using a transformation assay, we finally showed that none of the STLV-3 auxiliary proteins had the ability to induce colony formation, while both Tax3 and APH-3 promote cellular transformation. Altogether, these results complete the characterization of the newly described PTLV-3 virus.
    Journal of Virology 10/2014; 89(2). DOI:10.1128/JVI.02150-14 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Of the seven known species of human retroviruses only one, human T-cell lymphotropic virus type 4 (HTLV-4), lacks a known animal reservoir. We report the largest screening for simian T-cell lymphotropic virus (STLV-4) to date in a wide range of captive and wild non-human primate (NHP) species from Cameroon. Among the 681 wild and 426 captive NHPs examined, we detected STLV-4 infection only among gorillas by using HTLV-4-specific quantitative polymerase chain reaction. The large number of samples analyzed, the diversity of NHP species examined, the geographic distribution of infected animals relative to the known HTLV-4 case, as well as detailed phylogenetic analyses on partial and full genomes, indicate that STLV-4 is endemic to gorillas, and that rather than being an ancient virus among humans, HTLV-4 emerged from a gorilla reservoir, likely through the hunting and butchering of wild gorillas. Our findings shed further light on the importance of gorillas as keystone reservoirs for the evolution and emergence of human infectious diseases and provide a clear course for preventing HTLV-4 emergence through management of human contact with wild gorillas, the development of improved assays for HTLV-4/STLV-4 detection and the ongoing monitoring of STLV-4 among gorillas and for HTLV-4 zoonosis among individuals exposed to gorilla populations.
    01/2014; 3(1). DOI:10.1038/emi.2014.7