2-Aminopurine-modified abasic-site-containing duplex DNA for highly selective detection of theophylline.

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
Journal of the American Chemical Society (Impact Factor: 10.68). 03/2009; 131(7):2448-9. DOI: 10.1021/ja8095625
Source: PubMed

ABSTRACT 2-Aminopurine-modified abasic-site-containing duplex [DNA 5'-TCTGC GTCCT PXT TAACG CACAC-3'/3'-AGACG CAGGA TCA ATTGC GTGTG-5'; P = 2-aminopurine, X = abasic site (Spacer-C3), C = receptor base] is capable of selectively binding to the bronchodilator theophylline with a dissociation constant of 10 microM (5 degrees C, pH 7.0, I = 0.11 M) and is applicable to monitoring serum theophylline concentrations.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aptasensors are aptamer-based biosensors with excellent recognition capability towards a wide range of targets. Specially, there have been ever-growing interests in the development of aptasensors for the detection of small molecules. This phenomenon is contributed to two reasons. On one hand, small biomolecules play an important role in living organisms with many kinds of biological function, such as antiarrhythmic effect and vasodilator activity of adenosine. On the other hand, the concentration of small molecules can be an indicator for disease diagnosis, for example, the concentration of ATP is closely associated with cell injury and cell viability. As a potential analysis tool in the construction of aptasensors, optical analysis has attracted much more interest of researchers due to its high sensitivity, quick response and simple operation. Besides, it promises the promotion of aptasensors in performance toward a new level. Review the development of optical aptasensors for small biomolecules will give readers an overall understanding of its progress and provide some theoretical guidelines for its future development. Hence, we give a mini-review on the advance of optical aptasensors for small biomolecules. This review focuses on recent achievements in the design of various optical aptasensors for small biomolecules, containing fluorescence aptasensors, colorimetric aptasensors, chemiluminescence aptasensors and other optical aptasensors.
    Biosensors & Bioelectronics 03/2014; 59C:64-74. · 6.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thioflavin T (ThT) has been widely utilized as a fluorescent marker for amyloid fibrils. However, the use of ThT as an efficient reporter for a specific DNA structure still remains in question. Here, we report that the fluorescence intensity of ThT is obviously enhancement in when it binds to ds-DNAs which contain cavity structures such as an abasic site, gap site or mismatch site. Such enhancement in fluorescence cannot be achieved for DNA without these cavity structures. The DNA cavities provide appropriate spaces to accommodate ThT and allow the occurrence of some specific interactions. The stacking interaction of the bound ThT with the cavity context bases is the main driving force for ThT binding to the cavities. This interaction restricts the excited state's rapid torsional rotation around the single C-C bond between the benzothiazole and dimethylaminobenzene moieties and thus results in a decreased population of the nonradiative twisted internal charge-transfer (TICT) state. It is impossible for this stacking interaction to occur in DNA without these cavities. This property can be used to recognize DNA cavities with high selectivity and sensitivity. We expect that the ability of ThT to target these DNA structures has the potential to be developed into practical and functional biomaterials for DNA sensors or devices.
    Molecular BioSystems 08/2013; · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequences like the core element of TATA box and CpG island are frequently encountered in the genome and related to transcription. The fate of repair of clustered abasic sites in such sequences of genomic importance is largely unknown. This prompted us to investigate the sequence dependence of cleavage efficiency of APE1 enzyme at abasic sites within the core sequences of TATA box and CpG island using fluorescence dynamics and reaction kinetics. Simultaneous molecular dynamics study through steady state and time resolved fluorescence spectroscopy using unique ethidium bromide dye release assay confirmed an elevated amount of abasic site cleavage of the TATA box sequence as compared to the core CpG island. Reaction kinetics showed that catalytic efficiency of APE1 for abasic site cleavage of core CpG island sequence was ∼4 times lower as compared to that of the TATA box. Higher value of Km was obtained from the core CpG island sequence than the TATA box sequence. This suggests a greater binding effect of APE1 enzyme on TATA sequence that signifies a prominent role of the sequence context of the DNA substrate. Evidently, a faster response from APE1 was obtained for clustered abasic damage repair of TATA box core sequences than CpG island consensus sequences. The neighboring bases of the abasic sites in the complementary DNA strand were found to have significant contribution in addition to the flanking bases in modulating APE1 activity. The repair refractivity of the bistranded clustered abasic sites arise from the slow processing of the second abasic site, consequently resulting in decreased overall production of potentially lethal double strand breaks.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 01/2014; s 766–767:56–65.


Available from