Article

Highly efficient transfection of rat cortical neurons using carbosilane dendrimers unveils a neuroprotective role for HIF-1alpha in early chemical hypoxia-mediated neurotoxicity.

Departamento de Ciencias Médicas, Unidad Asociada Neurodeath, CSIC-UCLM, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006, Albacete, Spain.
Pharmaceutical Research (Impact Factor: 4.74). 03/2009; 26(5):1181-91. DOI: 10.1007/s11095-009-9839-9
Source: PubMed

ABSTRACT To study the effect of a non-viral vector (carbosilane dendrimer) to efficiently deliver small interfering RNA to postmitotic neurons to study the function of hypoxia-inducible factor-1alpha (HIF1-alpha) during chemical hypoxia-mediated neurotoxicity.
Chemical hypoxia was induced in primary rat cortical neurons by exposure to CoCl(2). HIF1-alpha levels were determined by Western Blot and toxicity was evaluated by both MTT and LDH assays. Neurons were incubated with dendriplexes containing anti-HIF1-alpha siRNA and both uptake and HIF1-alpha knockdown efficiency were evaluated.
We report that a non-viral vector (carbosilane dendrimer) can deliver specific siRNA to neurons and selectively block HIF1-alpha synthesis with similar efficiency to that achieved by viral vectors. Using this method, we have found that this transcription factor plays a neuroprotective role during the early phase of chemical hypoxia-mediated neurotoxicity.
This work represents a proof-of-concept for the use of carbosilane dendrimers to deliver specific siRNA to postmitotic neurons to block selected protein synthesis. This indicates that this type of vector is a good alternative to viral vectors to achieve very high transfection levels in neurons. This also suggests that carbosilane dendrimers might be very useful for gene therapy.

0 Bookmarks
 · 
64 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To explore the role of the High Mobility Group Box 1 (HMGB1) protein in NMDA-mediated excitotoxicity in rat cortical neurons. METHODS: We knocked down HMGB1 using small-interfering RNA (siRNA) delivered into neurons by means of a dendrimer. We determined autophagy activation by measuring the ratio of light chain 3 protein isoforms (LC3B-I)/LC3B-II and by determining autophagolysosome labeling using the specific marker monodansyl cadaverine. Neuronal toxicity was induced by exposing the neurons to N-methyl-D-aspartate (NMDA) and it was determined by measuring Lactate dehydrogenase and MTT reduction. RESULTS: We found that NMDA receptor stimulation induced both neuronal death and autophagy in rat cortical neurons. In addition, NMDA also caused HMGB1 translocation from the neuronal nucleus to the cytoplasm where it formed a complex with Beclin1. HMGB1 was efficiently knocked down using a specific siRNA causing a blockade of NMDA-induced autophagy and potentiating NMDA-induced neuronal death. CONCLUSIONS: Our study demonstrates that HMGB1 plays a relevant role in neuronal autophagy regulation and suggest a protective role of autophagy during excitotoxicity. In addition, the dendrimer that we have used here is a good vector for siRNA delivery to neurons allowing lack-of-function studies.
    Pharmaceutical Research 04/2013; · 4.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to develop the effective vectors that had high gene transfection capability and low cytotoxicity in the neuronal cells, we tested the star-shaped polymer consisting of β-cyclodextrin core and poly(amidoamine) (PAMAM) dendron arms [β-CD-(D3)7] as the vector to transfect the human neuroblastoma SH-SY5Y cells. The physicochemical properties of the β-CD-(D3)7/plasmid DNA (pDNA) complexes were characterized by using gel electrophoresis, dynamic light scattering, transmission electron microscopy and zeta-potential experiments. Among the human neuroblastoma SH-SY5Y cells, β-CD-(D3)7/pDNA complex demonstrated a lower toxicity compared to those of PAMAM (G=4, with an ethylenediamine core)/pDNA complex. When the N/P ratio was over 20, it was observed that PAMAM had a faster increment in toxicity compared to β-CD-(D3)7. Fluorescent image, confocal microscopy image and flow cytometry showed that β-CD-(D3)7/pDNA complexes had significantly higher transgene activity than that of PAMAM/pDNA complexes. For example, the transfection efficiency was 20% and 7.5% for β-CD-(D3)7/pDNA and PAMAM/pDNA complexes, respectively. These results indicated that β-CD-(D3)7 might be a promising candidate for neurotypic cells gene delivery with the characteristics of good biocompatibility, relatively high gene transfection capability and potential in vivo gene delivery ability.
    Carbohydrate polymers. 04/2013; 94(1):185-92.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cationic ammonium Janus-type dendrimers have been synthesized via click chemistry coupling of carbosilane (generation 1–3) and PEG-based dendrons functionalized at the focal point with azide and alkyne moieties, respectively. These amphiphilic dendrimers have been studied as vectors for gene therapy against HIV in peripheral blood mononuclear cells (PBMC) and the results have been compared with a homocarbosilane dendrimer, observing the positive influence of the PEG unit.
    European journal of medicinal chemistry 01/2014; 76:43–52. · 3.27 Impact Factor