Article

Inhibition of poly(ADP-ribose) polymerase suppresses inflammation and promotes recovery after ischemic injury

Department of Neurology, University of California San Francisco, San Francisco, California 94121, USA.
Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism (Impact Factor: 5.34). 02/2009; 29(4):820-9. DOI: 10.1038/jcbfm.2009.9
Source: PubMed

ABSTRACT The brain inflammatory response induced by stroke contributes to cell death and impairs neurogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1) is a coactivator of the transcription factor NF-kappaB and required for NF-kappaB-mediated inflammatory responses. Here we evaluated PARP inhibition as a means of suppressing post-stroke inflammation and improving outcome after stroke. Rats were subjected to bilateral carotid occlusion-reperfusion, and treatment with the PARP inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) was begun 48 h later. PJ34 was found to rapidly suppress the ischemia-induced microglial activation and astrogliosis. Behavioral tests performed 6 to 8 weeks after ischemia showed deficits in spatial memory and learning that were lessened by the PJ34 treatment. Immunohistochemical evaluation of hippocampus at 8 weeks after ischemia showed increased neuronal density in CA1 layer of PJ34-treated animals relative to vehicle-treated animals. Bromodeoxyuridine labeling showed formation of new neurons in hippocampal CA1 area in PJ34-treated animals, but not in vehicle-treated animals. Together, these results suggest that treatment with a PARP inhibitor for several days after ischemia enhances long-term neuronal survival and neurogenesis by reducing inflammation.

1 Follower
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation is an important event in ischemic injury. These immune responses begin with the expression of pro-inflammatory genes modulating transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducers and activator of transcription-1 (STAT-1). The 70-kDa heat shock protein (Hsp70) can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. Since Hsp70 are induced under heat stress, we investigated the link between Hsp70 neuroprotection and phosphorylation of inhibitor of κB (IκB), c-Jun N-terminal kinases (JNK) and p38 through co-immunoprecipitation and ELISA assay. Transcription factors and pro-inflammatory genes were quantified by immunoblotting, EMSA and RT-PCR assays. The results showed that heat stress led to Hsp70 overexpression which rendered neuroprotection after ischemia-like injury. Overexpression Hsp70 also interrupts the phosphorylation of IκB, JNK and p38 and blunts DNA binding of their transcription factors (NF-κB, AP-1 and STAT-1), effectively downregulating the expression of pro-inflammatory genes in heat-pretreated astrocytes. Taken together, these results suggest that overexpression of Hsp70 may protect against brain ischemia via an anti-inflammatory mechanism by interrupting the phosphorylation of upstream of transcription factors. Copyright © 2014. Published by Elsevier Ltd.
    Neuroscience 12/2014; 286. DOI:10.1016/j.neuroscience.2014.11.057 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified. In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by overexpression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for NAD(+) during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of pro-inflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat fetus into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that nicotinamide constitutes a lead for exploring compounds with similar or better pharmacological profiles.
    Frontiers in Neuroscience 03/2014; 8:47. DOI:10.3389/fnins.2014.00047
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overactivity of poly(ADP-ribose) polymerase enzyme 1 (PARP-1) is suggested to be a major contributor to neuronal damage following brain or spinal cord injury, and has led to study the PARP-1 inhibitor 2-(dimethylamino)-N-(5,6-dihydro-6-oxophenanthridin-2yl)acetamide (PJ-34) as a neuroprotective agent. Unexpectedly, electrophysiological recording from the neonatal rat spinal cord in vitro showed that, under control conditions, 1-60 μM PJ-34 per se strongly increased spontaneous network discharges occurring synchronously on ventral roots, persisting for 24 h even after PJ-34 washout. The PARP-1 inhibitor PHE had no similar effect. The action by PJ-34 was reversibly suppressed by glutamate ionotropic receptor blockers and remained after applying strychnine and bicuculline. Fictive locomotion evoked by neurochemicals or by dorsal root stimulation was present 24 h after PJ-34 application. In accordance with this observation, lumbar neurons and glia were undamaged. Neurochemical experiments showed that PJ-34 produced up to 33% inhibition of synaptosomal glutamate uptake with no effect on GABA uptake. In keeping with this result, the glutamate uptake blocker TBOA (5 μM) induced long-lasting synchronous discharges without suppressing the ability to produce fictive locomotion after 24 h. The novel inhibition of glutamate uptake by PJ-34 suggested that this effect may compound tests for its neuroprotective activity which cannot be merely attributed to PARP-1 block. Furthermore, the current data indicate that the neonatal rat spinal cord could withstand a strong, long-lasting rise in network excitability without compromising locomotor pattern generation or circuit structure in contrast with the damage to brain circuits known to be readily produced by persistent seizures.
    Neuropharmacology 04/2012; 63(3):415-26. DOI:10.1016/j.neuropharm.2012.04.014 · 4.82 Impact Factor

Preview

Download
6 Downloads
Available from