A new quantitative method for gunshot residue analysis by ion beam analysis

Surrey Ion Beam Centre, University of Surrey, GU2 7XH, UK.
The Analyst (Impact Factor: 4.11). 06/2013; 138(16). DOI: 10.1039/c3an00597f
Source: PubMed


Imaging and analyzing gunshot residue (GSR) particles using the scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDS) is a standard technique that can provide important forensic evidence, but the discrimination power of this technique is limited due to low sensitivity to trace elements and difficulties in obtaining quantitative results from small particles. A new, faster method using a scanning proton microbeam and Particle Induced X-ray Emission (μ-PIXE), together with Elastic Backscattering Spectrometry (EBS) is presented for the non-destructive, quantitative analysis of the elemental composition of single GSR particles. In this study, the GSR particles were all Pb, Ba, Sb. The precision of the method is assessed. The grouping behaviour of different makes of ammunition is determined using multivariate analysis. The protocol correctly groups the cartridges studied here, with a confidence >99%, irrespective of the firearm or population of particles selected.

Download full-text


Available from: Melanie Jane Bailey,
  • Source
    • "Evaluation of shooting incidents with the use of modern less toxic ammunition types that produce less characteristic primer residue may demand an application of techniques complementary to SEM-EDX, such as integrated ion beam analysis (IBA) for examinations of inorganic component [22, 23], or variety of spectrometric and chromatographic methods for analysis of organic gunshot residues [24–27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chosen aspects of examinations of inorganic gunshot particles by means of scanning electron microscopy and energy dispersive X-ray spectrometry technique are presented. The research methodology of particles was worked out, which included a precise and repeatable procedure of the automatic detection and identification of particles as well as the representation of the obtained analytical data in the form of the frequencies of occurrence of particles of certain chemical or morphological class within the whole population of particles revealed in a specimen. On this basis, there were established relationships between the chemical and morphological properties of populations of particles and factors, such as the type of ammunition, the distance from the gun muzzle to the target, the type of a substrate the particles sediment on, and the time between shooting and collecting the specimens. Each of these aspects of examinations of particles revealed a great potential of being utilised in casework, while establishing various circumstances of shooting incidents leads to the reconstruction of the course of the studied incident.
    BioMed Research International 06/2014; 2014(3):428038. DOI:10.1155/2014/428038 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are few techniques capable of the non-destructive and model-free measurement at 1% absolute accuracy of quantity of material in thin films without the use of sample-matched standards. We demonstrate that Rutherford backscattering spectrometry can achieve this robustly, reliably and conveniently. Using 1.5 MeV He+, a 150 keV ion implant into silicon with a nominal fluence of 5 × 1015 As/cm² has been independently measured repeatedly over a period of 2 years with a mean total combined standard uncertainty of 0.9 ± 0.3% relative to an internal standard given by the silicon stopping power (a coverage factor k=1 is used for all uncertainties given). The stopping power factor of this beam in silicon is determined absolutely with a mean total combined standard uncertainty of 0.8 ± 0.1%, traceable to the 0.6% uncertainty of the Sb-implanted certified reference material (CRM) from IRMM, Geel. The uncertainty budget highlights the need for the accurate determination of the electronic gain of the detection system and the scattering angle, parameters conventionally regarded as trivial. This level of accuracy is equally applicable to much lower fluences since it is not dominated by any one effect; but it cannot be reached without good control of all of these effects. This analytical method is extensible to non-Rutherford scattering. The stopping power factor of 4.0 MeV lithium in silicon is also determined at 1.0% absolute accuracy traceable to the Sb-implanted CRM. This work used SRIM2003 stopping powers which are therefore demonstrated correct at 0.8% for 1.5 MeV He in Si and 1% for 4 MeV Li in Si.
    Analytical methods 11/2013; 6(1):120-129. DOI:10.1039/C3AY41398E · 1.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review covers developments in the analysis of chemicals, metals and functional materials. We have strengthened the criticality of this review and have included only those papers dealing with advances in the analysis of these materials. Other papers which the reader may find useful because they cover interesting applications are included in the tables. It follows last year's review1 and should be read in conjunction with other reviews in the series.2–5 Significant developments during this review period include the continued expansion of the use of LIBS in remote analysis, especially of explosives, metals and nuclear materials. The stand-off capability of the technique makes it very desirable in these areas. The use of chemometrics for removing substrate interferences is proving to be effective in making the technique more robustly quantitative and a number of papers developing the understanding of plasma physics to improve the technique of LIBS are reviewed. Multiple spectroscopic techniques are being developed to maximize the knowledge which can be derived from the analysis, especially of high value samples, for example the combination of LIBS and Raman measurements to gain molecular and atomic spectral information. Advances in the analysis of nanomaterials and single particles are reviewed and papers dealing with single particle analysis, field flow fractionation and related techniques coupled with ICP-MS are advancing the analytical chemistry in the field. These techniques are also increasingly being used in vivo and in biological areas. Depth profiling of semiconductor materials is an important area during this review period, especially for the determination of dopant elements. There are significant changes to the writing team this year. Mike Hinds has left the team and we are pleased to welcome Bridget Gibson and Ian Whiteside.
    Journal of Analytical Atomic Spectrometry 09/2014; 28(12). DOI:10.1039/C4JA90045F · 3.47 Impact Factor
Show more