Article

The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism.

Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience at the NYU Child Study Center, New York University Langone Medical Center, New York, NY, USA.
Molecular Psychiatry (Impact Factor: 15.15). 06/2013; DOI: 10.1038/mp.2013.78
Source: PubMed

ABSTRACT Autism spectrum disorders (ASDs) represent a formidable challenge for psychiatry and neuroscience because of their high prevalence, lifelong nature, complexity and substantial heterogeneity. Facing these obstacles requires large-scale multidisciplinary efforts. Although the field of genetics has pioneered data sharing for these reasons, neuroimaging had not kept pace. In response, we introduce the Autism Brain Imaging Data Exchange (ABIDE)-a grassroots consortium aggregating and openly sharing 1112 existing resting-state functional magnetic resonance imaging (R-fMRI) data sets with corresponding structural MRI and phenotypic information from 539 individuals with ASDs and 573 age-matched typical controls (TCs; 7-64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we present this resource and demonstrate its suitability for advancing knowledge of ASD neurobiology based on analyses of 360 male subjects with ASDs and 403 male age-matched TCs. We focused on whole-brain intrinsic functional connectivity and also survey a range of voxel-wise measures of intrinsic functional brain architecture. Whole-brain analyses reconciled seemingly disparate themes of both hypo- and hyperconnectivity in the ASD literature; both were detected, although hypoconnectivity dominated, particularly for corticocortical and interhemispheric functional connectivity. Exploratory analyses using an array of regional metrics of intrinsic brain function converged on common loci of dysfunction in ASDs (mid- and posterior insula and posterior cingulate cortex), and highlighted less commonly explored regions such as the thalamus. The survey of the ABIDE R-fMRI data sets provides unprecedented demonstrations of both replication and novel discovery. By pooling multiple international data sets, ABIDE is expected to accelerate the pace of discovery setting the stage for the next generation of ASD studies.Molecular Psychiatry advance online publication, 18 June 2013; doi:10.1038/mp.2013.78.

4 Followers
 · 
266 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed by 24, 12, 6, or only 3 head motion parameters demonstrated network structure typically associated with functional connectivity, and certain networks were discernable in the variance extracted by as few as 2 physiologic regressors. Simulated nuisance regressors, unrelated to the true data noise, also removed variance with network structure, indicating that any group of regressors that randomly sample variance may remove highly structured "signal" as well as "noise." Furthermore, to support this we demonstrate that random sampling of the original data variance continues to exhibit robust network structure, even when as few as 10% of the original volumes are considered. Finally, we examine the diminishing returns of increasing the number of nuisance regressors used in pre-processing, showing that excessive use of motion regressors may do little better than chance in removing variance within a functional network. It remains an open challenge to understand the balance between the benefits and confounds of noise correction using nuisance regressors. Copyright © 2015. Published by Elsevier Inc.
    NeuroImage 04/2015; 360. DOI:10.1016/j.neuroimage.2015.03.070 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: From the initial arguments over whether 12 to 20 subjects were sufficient for an fMRI study, sample sizes in psychiatric neuroimaging studies have expanded into the tens of thousands. These large-scale imaging studies fall into several categories, each of which has specific advantages and challenges. The different study types can be grouped based on their level of control: meta-analyses, at one extreme of the spectrum, control nothing about the imaging protocol or subject selection criteria in the datasets they include, On the other hand, planned multi-site mega studies pour intense efforts into strictly having the same protocols. However, there are several other combinations possible, each of which is best used to address certain questions. The growing investment of all these studies is delivering on the promises of neuroimaging for psychiatry, and holds incredible potential for impact at the level of the individual patient. However, to realize this potential requires both standardized data-sharing efforts, so that there is more staying power in the datasets for re-use and new applications, as well as training the next generation of neuropsychiatric researchers in "Big Data" techniques in addition to traditional experimental methods. The increased access to thousands of datasets along with the needed informatics demands a new emphasis on integrative scientific methods.
    01/2014; 3:29. DOI:10.1186/2047-217X-3-29
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estimating the functional interactions between brain regions and mapping those connections to corresponding inter-individual differences in cognitive, behavioral and psychiatric domains are central pursuits for understanding the human connectome. The number and complexity of functional interactions within the connectome and the large amounts of data required to study them position functional connectivity research as a "big data" problem. Maximizing the degree to which knowledge about human brain function can be extracted from the connectome will require developing a new generation of neuroimaging analysis algorithms and tools. This review describes several outstanding problems in brain functional connectomics with the goal of engaging researchers from a broad spectrum of data sciences to help solve these problems. Additionally it provides information about open science resources consisting of raw and preprocessed data to help interested researchers get started.
    01/2015; 4:13. DOI:10.1186/s13742-015-0045-x