Production and isotope labeling of antimicrobial peptides in Escherichia coli by means of a novel fusion partner that enables high-yield insoluble expression and fast purification.

Institut de Chimie, Université Louis Pasteur, CNRS UMR 7177, 67070 Strasbourg, France.
Journal of Peptide Science (Impact Factor: 2.07). 02/2009; 15(4):278-84. DOI: 10.1002/psc.1112
Source: PubMed

ABSTRACT A method is presented that allows efficient production of antimicrobial peptides in bacteria by means of fusion to the histone fold domain of the human transcription factor TAF12. This small fusion partner drives high-level expression of peptides and leads to their accumulation in an entirely insoluble form, thereby eliminating toxicity to the host. Using the antimicrobial peptide LAH4 as an example, we demonstrate that neither affinity purification of the TAF12 fusion protein nor initial solubilization of inclusion bodies in denaturing buffers is required. Instead, crude insoluble material from bacteria is directly dissolved in formic acid for immediate release of the peptide through chemical cleavage at a unique Asp-Pro site. This is followed by purification to homogeneity in a single chromatographic step. Because of the elevated expression levels of the histone fold domain and its small size (8 kDa), this straightforward purification scheme produces yields in excess of 10 mg active peptide per liter of culture. We demonstrate that TAF12 fusion allows expression of a wide range of antimicrobial peptides as well as efficient isotope labeling for NMR studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications.
    FEBS letters 09/2013; · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human histatin 1 (Hst1), a member of the histatin family, possesses antimicrobial properties. In this study, we applied a previously developed cleavable self-aggregating tag (cSAT) for the expression and purification of histatin 1 to demonstrate its utility for peptide expression and purification. The tag consists of a self-cleavable intein and a self-assembling peptide ELK16 (I-ELK16). First, an active insoluble aggregate of the recombinant histatin 1-Mxe GyrA intein-ELK16 (Hst1-I-ELK16) fusion protein was produced with a yield of 28.9μg/mg wet cell pellet. The thiol reagent dithiothreitol (DTT) was then used to induce the intein-mediated cleavage and peptide release into the soluble fraction with a yield of 2.06μg/mg wet cell pellet and a purity of 70%. The peptide was further purified by high performance liquid chromatography. These results were comparable to the yield and purity achieved when the more conventional glutathione transferase (GST) tag was used. The antimicrobial activities of this recombinant histatin 1 were confirmed against three Candida strains. This cSAT technique offers considerable advantages in terms of its simplicity and speed, eliminating the need for an exogenous protease, and reducing the number of chromatography purification steps. This technique should also be useful for the expression and purification of other AMPs.
    Protein Expression and Purification 04/2013; 88(2):248-53. · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: (1)H-(15)N HSQC spectroscopy is a workhorse of protein NMR. However, under physiological conditions the quality of HSQC spectra tends to deteriorate due to fast solvent exchange. For globular proteins only a limited number of surface residues are affected, but in the case of intrinsically disordered proteins (IDPs) HSQC spectra are thoroughly degraded, suffering from both peak broadening and loss of intensity. To alleviate this problem, we make use of the following two concepts. (1) Proton-decoupled HSQC. Regular HSQC and its many variants record the evolution of multi-spin modes, 2NxHz or 2NxHx, in indirect dimension. Under the effect of fast solvent exchange these modes undergo rapid decay, which results in severe line-broadening. In contrast, proton-decoupled HSQC relies on Nx coherence which is essentially insensitive to the effects of solvent exchange. Moreover, for measurements involving IDPs at or near physiological temperature, Nx mode offers excellent relaxation properties, leading to very sharp resonances. (2) Cross-polarization (1)H-to-(15)N transfer. If CP element is designed such as to lock both (1)H(N) and water magnetization, the following transfer is effected: [Formula: see text] Thus water magnetization is successfully exploited to boost the amount of signal. In addition, CP element suffers less loss from solvent exchange, conformational exchange, and dipolar relaxation compared to the more popular INEPT element. Combining these two concepts, we have implemented the experiment termed CP-HISQC (cross-polarization assisted heteronuclear in-phase single-quantum correlation). The pulse sequence has been designed such as to preserve water magnetization and therefore can be executed with reasonably short recycling delays. In the presence of fast solvent exchange, kex ~ 100 s(-1), CP-HISQC offers much better spectral resolution than conventional HSQC-type experiments. At the same time it offers up to twofold gain in sensitivity compared to plain proton-decoupled HSQC. The new sequence has been tested on the sample of drkN SH3 domain at pH 7.5, 30 °C. High-quality spectrum has been recorded in less than 1 h, containing resonances from both folded and unfolded species. High-quality spectra have also been obtained for arginine side-chain H(ε)N(ε) groups in the sample of short peptide Sos. For Arg side chains, we have additionally implemented (HE)NE(CD)HD experiment. Using (13)C-labeled sample of Sos, we have demonstrated that proton-to-nitrogen CP transfer remains highly efficient in the presence of solvent exchange as fast as kex = 620 s(-1). In contrast, INEPT transfer completely fails in this regime.
    Journal of Biomolecular NMR 02/2014; · 2.85 Impact Factor