Article

The adrenal gland: common disease states and suspected new applications.

University of Kentucky, Lexington, KY 40536-0200, USA.
Clinical laboratory science: journal of the American Society for Medical Technology 01/2013; 26(2):118-25.
Source: PubMed

ABSTRACT The adrenal gland, while small in size, provides a major punch to human metabolism. The interplay between the adrenal cortex hormones aldosterone and cortisol provides needed regulation to human metabolism. Aldosterone regulates the body sodium content affecting blood pressure thru fluid-volume regulation by the kidney. Cortisol, also from the adrenal cortex, contributes to regulation of glucose and protein metabolism. Diseases like addison's disease and Cushing's syndrome that affect the normal levels of these hormones can lead to serious pathologies that need to be detected thru clinical laboratory testing. The inner core of the adrenal gland, called the medulla, houses the catecholamine epinephrine, a fast acting neuropeptide hormone that can influence body action and energy levels quickly. The pheochromocytomas pathology of the adrenal medulla adversely affects the medulla hormones and needs to be recognized by clinical laboratory testing. The overview of the adrenal gland and its potential pathologies needs to be looked at anew in relation to post-traumatic stress disorder to find any linkage that may aid in the treatment and cure of our affected military soldiers. This interrelationship between cortisol and epinephrine in PTSD should be closely evaluated to determine if the suspected linkages are significant.

4 Followers
 · 
179 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various neurological and psychiatric manifestations have been recorded in children with adrenal disorders. Based on literature review and on personal case-studies and case-series we focused on the pathophysiological and clinical implications of glucocorticoid-related, mineralcorticoid-related, and catecholamine-related paediatric nervous system involvement. Childhood Cushing syndrome can be associated with long-lasting cognitive deficits and abnormal behaviour, even after resolution of the hypercortisolism. Exposure to excessive replacement of exogenous glucocorticoids in the paediatric age group (e.g., during treatments for adrenal insufficiency) has been reported with neurological and magnetic resonance imaging (MRI) abnormalities (e.g., delayed myelination and brain atrophy) due to potential corticosteroid-related myelin damage in the developing brain and the possible impairment of limbic system ontogenesis. Idiopathic intracranial hypertension (IIH), a disorder of unclear pathophysiology characterised by increased cerebrospinal fluid (CSF) pressure, has been described in children with hypercortisolism, adrenal insufficiency, and hyperaldosteronism, reflecting the potential underlying involvement of the adrenal-brain axis in the regulation of CSF pressure homeostasis. Arterial hypertension caused by paediatric adenomas or tumours of the adrenal cortex or medulla has been associated with various hypertension-related neurological manifestations. The development and maturation of the central nervous system (CNS) through childhood is tightly regulated by intrinsic, paracrine, endocrine, and external modulators, and perturbations in any of these factors, including those related to adrenal hormone imbalance, could result in consequences that affect the structure and function of the paediatric brain. Animal experiments and clinical studies demonstrated that the developing (i.e., paediatric) CNS seems to be particularly vulnerable to alterations induced by adrenal disorders and/or supraphysiological doses of corticosteroids. Physicians should be aware of potential neurological manifestations in children with adrenal dysfunction to achieve better prevention and timely diagnosis and treatment of these disorders. Further studies are needed to explore the potential neurological, cognitive, and psychiatric long-term consequences of high doses of prolonged corticosteroid administration in childhood.
    International Journal of Endocrinology 09/2014; 2014:282489. DOI:10.1155/2014/282489 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: : Guidelines on the appropriate use of perioperative steroids in patients with inflammatory bowel disease (IBD) are lacking. As a result, corticosteroid supplementation during and after colorectal surgery procedures has been shown to be highly variable. A clearer understanding of the indications for perioperative corticosteroid administration relative to preoperative corticosteroid dosing and duration of therapy is essential. In this review, we outline the basic tenets of the hypothalamic-pituitary-adrenal (HPA) axis and its normal response to stress, describe how corticosteroid use is thought to affect this system, and provide an overview of the currently available data on perioperative corticosteroid supplementation including the limited evidence pertaining to patients with inflammatory bowel disease. Based on currently existing data, we define "adrenal suppression," and propose a patient-based approach to perioperative corticosteroid management in the inflammatory bowel disease population based on an individual's historical use of corticosteroids, the type of surgery they are undergoing, and HPA axis testing when applicable. Patients without adrenal suppression (<5 mg prednisone per day) do not require extra corticosteroid supplementation in the perioperative period; patients with adrenal suppression (>20 mg prednisone per day) should be treated with additional perioperative corticosteroid coverage above their baseline home regimen; and patients with unclear HPA axis function (>5 and <20 mg prednisone per day) should undergo preoperative HPA axis testing to determine the best management practices. The proposed management algorithm attempts to balance the risks of adrenal insufficiency and immunosuppression.
    Inflammatory Bowel Diseases 09/2014; DOI:10.1097/MIB.0000000000000185 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hypothalamic-pituitary-adrenal (HPA) axis is a classic neuroendocrine system. One of the best ways to understand the HPA axis is to appreciate its dynamics in the variety of diseases and syndromes that affect it. Excess glucocorticoid activity can be due to endogenous cortisol overproduction (spontaneous Cushing's syndrome) or exogenous glucocorticoid therapy (iatrogenic Cushing's syndrome). Endogenous Cushing's syndrome can be subdivided into ACTH-dependent and ACTH-independent, the latter of which is usually due to autonomous adrenal overproduction. The former can be due to a pituitary corticotroph tumor (usually benign) or ectopic ACTH production from tumors outside the pituitary; both of these tumor types overexpress the proopiomelanocortin gene. The converse of Cushing's syndrome is the lack of normal cortisol secretion and is usually due to adrenal destruction (primary adrenal insufficiency) or hypopituitarism (secondary adrenal insufficiency). Secondary adrenal insufficiency can also result from a rapid discontinuation of long-term, pharmacological glucocorticoid therapy because of HPA axis suppression and adrenal atrophy. Finally, mutations in the steroidogenic enzymes of the adrenal cortex can lead to congenital adrenal hyperplasia and an increase in precursor steroids, particularly androgens. When present in utero, this can lead to masculinization of a female fetus. An understanding of the dynamics of the HPA axis is necessary to master the diagnosis and differential diagnosis of pituitary-adrenal diseases. Furthermore, understanding the pathophysiology of the HPA axis gives great insight into its normal control. © 2014 American Physiological Society. Compr Physiol 4:739-769, 2014.
    04/2014; 4(2):739-69. DOI:10.1002/cphy.c130035