Stem cells and tissue-engineered skin.

Department of Dermatology, University of California and Veterans Affairs Medical Center, San Francisco, CA, USA.
Skin pharmacology and physiology (Impact Factor: 1.96). 02/2009; 22(2):55-62. DOI: 10.1159/000178864
Source: PubMed

ABSTRACT Advances in tissue engineering of skin are needed for clinical applications (as in wound healing and gene therapy) for cutaneous and systemic diseases. In this paper we review the use of epidermal stem cells as a source of cells to improve tissue-engineered skin. We discuss the importance and limitations of epidermal stem cell isolation using biomarkers, in quest of a pure stem cell preparation, as well as the culture conditions necessary to maintain this purity as required for a qualitatively superior and long-lasting engineered skin. Finally, we review the advantages of using additional multipotent stem cell sources to functionally and cosmetically optimize the engineered tissue.

1 Follower
  • Polish Journal of Surgery 04/2014; 86(4):202-10. DOI:10.2478/pjs-2014-0037
  • [Show abstract] [Hide abstract]
    ABSTRACT: The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications.METHODS: Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA).RESULTS: Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%.CONCLUSION: Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.
    Bio-medical materials and engineering 01/2014; 24(2):1457-1468. DOI:10.3233/BME-130950 · 0.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair.
    STEM CELLS TRANSLATIONAL MEDICINE 08/2014; 3(10). DOI:10.5966/sctm.2013-0217 · 3.60 Impact Factor


1 Download
Available from