Article

The influence of the stable expression of BMP2 in fibrin clots on the remodelling and repair of osteochondral defects.

Department of Orthopaedics and Traumatology, TU Munchen, Ismaninger Str. 22, 81675 Munich, Germany.
Biomaterials (Impact Factor: 7.6). 02/2009; 30(12):2385-92. DOI:10.1016/j.biomaterials.2009.01.016
Source: PubMed

ABSTRACT Growth factors like BMP2 have been tested for osteochondral repair, but transfer methods used until now were insufficient. Therefore, the aim of this study was to analyse if stable BMP2 expression after retroviral vector (Bullet) transduction is able to regenerate osteochondral defects in rabbits. Fibrin clots colonized by control or BMP2-transduced chondrocytes were generated for in vitro experiments and implantation into standardized corresponding osteochondral defects (n=32) in the rabbit trochlea. After 4 and 12 weeks repair tissue was analysed by histology (HE, alcian-blue, toluidine-blue), immunohistochemistry (Col1, Col2, aggrecan, aggrecan-link protein), ELISA (BMP2), and quantitative RT-PCR (BMP2, Col1, Col2, Col10, Cbfa1, Sox9). In vitro clots were also analysed by BMP2-ELISA, histology (alcian-blue), quantitative RT-PCR and in addition by electron microscopy. BMP2 increased Col2 expression, proteoglycan production and cell size in vitro. BMP2 transduction by Bullet was efficient and gene expression was stable in vivo over at least 12 weeks. Proteoglycan content and ICRS-score of repair tissue were improved by BMP2 after 4 and 12 weeks and Col2 expression after 4 weeks compared to controls. However, in spite of stable BMP2 expression, a complete repair of osteochondral defects could not be demonstrated. Therefore, BMP2 is not suitable to regenerate osteochondral lesions completely.

0 0
 · 
0 Bookmarks
 · 
79 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Articular cartilage has very limited intrinsic healing capacity. Although numerous attempts to repair full-thickness articular cartilage defects have been conducted, no methods have successfully regenerated long-lasting hyaline cartilage. One of the most promising procedures for cartilage repair is tissue engineering accompanied by gene therapy. With gene therapy, genes encoding for therapeutic growth factors can be expressed at a high level in the injured site for an extended period of time. Chondrocytes have been intensively studied for cell transplantation in articular cartilage defects. However, recent studies have shown that chondrocytes are not the only candidate for cartilage repair. Muscle-derived cells have been found capable of delivering genes and represent a good vehicle to deliver therapeutic genes to improve cartilage repair. More importantly, recent studies have suggested the presence of pluripotent stem cells in muscle-derived cells. New techniques of cell therapy and molecular medicine for the treatment of cartilage lesions are currently undergoing clinical trials. This paper will summarize the current status of gene therapy for cartilage repair and its future application.
    Zeitschrift für Orthopädie 01/2011; 140(2):153-9. · 0.86 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Articular cartilage defects do not regenerate. Transplantation of autologous articular chondrocytes, which is clinically being performed since several decades, laid the foundation for the transplantation of genetically modified cells, which may serve the dual role of providing a cell population capable of chondrogenesis and an additional stimulus for targeted articular cartilage repair. Experimental data generated so far have shown that genetically modified articular chondrocytes and mesenchymal stem cells (MSC) allow for sustained transgene expression when transplanted into articular cartilage defects in vivo. Overexpression of therapeutic factors enhances the structural features of the cartilaginous repair tissue. Combined overexpression of genes with complementary mechanisms of action is also feasible, holding promises for further enhancement of articular cartilage repair. Significant benefits have been also observed in preclinical animal models that are, in principle, more appropriate to the clinical situation. Finally, there is convincing proof of concept based on a phase I clinical gene therapy study in which transduced fibroblasts were injected into the metacarpophalangeal joints of patients without adverse events. To realize the full clinical potential of this approach, issues that need to be addressed include its safety, the choice of the ideal gene vector system allowing for a long-term transgene expression, the identification of the optimal therapeutic gene(s), the transplantation without or with supportive biomaterials, and the establishment of the optimal dose of modified cells. As safe techniques for generating genetically engineered articular chondrocytes and MSCs are available, they may eventually represent new avenues for improved cell-based therapies for articular cartilage repair. This, in turn, may provide an important step toward the unanswered question of articular cartilage regeneration.
    Croatian Medical Journal 06/2011; 52(3):245-61. · 1.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Direct gene transfer strategies are of promising value to treat articular cartilage defects. Here, we tested the ability of a recombinant adeno-associated virus (rAAV) SOX9 vector to enhance the repair of cartilage lesions in vivo. The candidate construct was provided to osteochondral defects in rabbit knee joints vis-à-vis control (lacZ) vector treatment and to cells relevant of the repair tissue (mesenchymal stem cells, chondrocytes). Efficient, long-term transgene expression was noted within the lesions (up to 16 weeks) and in cells in vitro (21 days). Administration of the SOX9 vector was capable of stimulating the biological activities in vitro and over time in vivo. SOX9 treatment in vivo was well tolerated, leading to improved cartilage repair processes with enhanced production of major matrix components. Remarkably, application of rAAV SOX9 delayed premature terminal differentiation and hypertrophy in the newly formed cartilage, possible due to contrasting effects of SOX9 on RUNX2 and β-catenin osteogenic expression in this area. Most strikingly, SOX9 treatment improved the reconstitution of the subchondral bone in the defects, possibly due to an increase in RUNX2 expression in this location. These findings show the potential of direct rAAV gene delivery as an efficient tool to treat cartilage lesions.
    Journal of Molecular Medicine 11/2012; · 4.77 Impact Factor