Article

mTOR Complex 2 Is Required for the Development of Prostate Cancer Induced by Pten Loss in Mice

Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
Cancer cell (Impact Factor: 23.89). 03/2009; 15(2):148-59. DOI: 10.1016/j.ccr.2008.12.017
Source: PubMed

ABSTRACT mTOR complex 2 (mTORC2) contains the mammalian target of rapamycin (mTOR) kinase and the Rictor regulatory protein and phosphorylates Akt. Whether this function of mTORC2 is critical for cancer progression is unknown. Here, we show that transformed human prostate epithelial cells lacking PTEN require mTORC2 to form tumors when injected into nude mice. Furthermore, we find that Rictor is a haploinsufficient gene and that deleting one copy protects Pten heterozygous mice from prostate cancer. Finally, we show that the development of prostate cancer caused by Pten deletion specifically in prostate epithelium requires mTORC2, but that for normal prostate epithelial cells, mTORC2 activity is nonessential. The selective requirement for mTORC2 in tumor development suggests that mTORC2 inhibitors may be of substantial clinical utility.

0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cells of the prostate gland are dependent on cell signaling pathways to regulate their growth, maintenance and function. However, perturbations in key signaling pathways, resulting in neoplastic transformation of cells in the prostate epithelium, are likely to generate subtypes of prostate cancer which may subsequently require different treatment regimes. Accumulating evidence supports multiple sources of stem cells in the prostate epithelium with distinct cellular origins for prostate tumorigenesis documented in animal models, while human prostate cancer stem-like cells (PCSCs) are typically enriched by cell culture, surface marker expression and functional activity assays. As future therapies will require a deeper understanding of its cellular origins as well as the pathways that drive PCSC maintenance and tumorigenesis, we review the molecular and functional evidence supporting dysregulation of PI3K/AKT, RAS/MAPK and STAT3 signaling in PCSCs, the development of castration resistance, and as a novel treatment approach for individual men with prostate cancer.
    Oncotarget 12/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Braf(V600E) induces benign, growth-arrested melanocytic nevus development, but also drives melanoma formation. Cdkn2a loss in Braf(V600E) melanocytes in mice results in rare progression to melanoma, but only after stable growth arrest as nevi. Immediate progression to melanoma is prevented by upregulation of miR-99/100, which downregulates mTOR and IGF1R signaling. mTORC1 activation through Stk11 (Lkb1) loss abrogates growth arrest of Braf(V600E) melanocytic nevi, but is insufficient for complete progression to melanoma. Cdkn2a loss is associated with mTORC2 and Akt activation in human and murine melanocytic neoplasms. Simultaneous Cdkn2a and Lkb1 inactivation in Braf(V600E) melanocytes results in activation of both mTORC1 and mTORC2/Akt, inducing rapid melanoma formation in mice. In this model, activation of both mTORC1/2 is required for Braf-induced melanomagenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cancer Cell 01/2015; 27(1):41-56. DOI:10.1016/j.ccell.2014.11.014 · 23.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: mTOR, a serine/threonine kinase, is a master regulator of cellular metabolism. mTOR regulates cell growth and proliferation in response to a wide range of cues, and its signaling pathway is deregulated in many human diseases. mTOR also plays a crucial role in regulating autophagy. This Review provides an overview of the mTOR signaling pathway, the mechanisms of mTOR in autophagy regulation, and the clinical implications of mTOR inhibitors in disease treatment.
    Journal of Clinical Investigation 01/2015; 125(1):25-32. DOI:10.1172/JCI73939 · 13.77 Impact Factor

Full-text (2 Sources)

Download
32 Downloads
Available from
May 17, 2014