Genetically distinct strains of Cassava brown streak virus in the Lake Victoria basin and the Indian Ocean coastal area of East Africa.

Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland.
Archives of Virology (Impact Factor: 2.28). 02/2009; 154(2):353-9. DOI: 10.1007/s00705-008-0301-9
Source: PubMed

ABSTRACT Six isolates of Cassava brown streak virus (CBSV, genus Ipomovirus; Potyviridae) from the Lake Victoria basin in Uganda and Tanzania were characterized. Virus particles were 650 nm long. The complete coat protein (CP)-encoding sequences (1,101 nucleotides, nt) were 90.7-99.5 and 93.7-99.5% identical at the nt and amino acid (aa) levels, respectively. The 3' untranslated region was 225, 226 or 227 nt long. These eight isolates were only 75.8-77.5% (nt) and 87.0-89.9% (aa) identical when compared to the partial CP sequences (714 nt) of six CBSV isolates characterized previously from the costal lowlands of Tanzania and Mozambique. Hence, two genetically different and geographically separated populations of CSBV exist in East Africa.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cassava brown streak disease (CBSD) has emerged as the most important viral disease of cassava (Manihot esculenta) in Africa and is a major threat to food security. CBSD is caused by two distinct species of ipomoviruses, Cassava brown streak virus and Ugandan cassava brown streak virus, belonging to the family Potyviridae. Previously CBSD was reported only from the coastal lowlands of East Africa, but recently it has begun to spread as an epidemic throughout the Great Lakes region of East Africa and Central Africa. This new spread represents a major threat to the cassava-growing regions of West Africa. CBSD resistant cassava cultivars are being developed through breeding and transgenic RNAi-derived field resistance to CBSD has also been demonstrated. This review aims to provide a summary of the most important studies on aetiology, epidemiology and control of CBSD and highlight key research areas that need prioritization.
    Journal of General Virology 12/2014; DOI:10.1099/jgv.0.000014 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cass ava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties.Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene.ResultsA complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species.ConclusionsA substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread.
    Virology Journal 12/2014; 11(1):216. DOI:10.1186/s12985-014-0216-x · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cassava brown streak disease (CBSD) is the most devastating disease of cassava in southern, eastern and cntral Africa, and can cause up to 100% yield loss. Limited progress has been made in breeding for host plant resistance due to limited knowledge on the resistance variability to the disease. Reaction of promising cassava genotypes to CBSD in multi-environments are also unknown. Therefore, this study intended to: (1) Identify additional sources of resistance to CBSD; (2) Determine the stability of resistance to CBSD, and (3) mega-environments for screening resistance to CBSD. Field evaluation of 19 genotypes was conducted in RCBD with three replications at three agro-ecologies of Uganda for two cropping cycles. Additive Main Effects and Multiplicative Interaction (AMMI) and (GGE) biplot models were used to analyze genotype-environment interactions. Based on mean field reaction, the six best genotypes identified for resistance to CBSD were: TZ/06/140, TMS30572, TZ /06/130, N3/66/1, N3/58/1 with N3/104/3 and N3/66/1 being the most stable. While N3/66/1, N3/58/1 and N3/104/3, Mzungu and Kigoma Red were reported to be putative new sources of resistance to CBSD in Uganda. Genotypes (G), Environments (E), and GxE interactions were all significant, with no genotype exhibiting complete resistance. The significant result for GxE interaction to CBSD indicates the need for multi-environment screening and is suggestive of quantitative nature of CBSD resistance.

Full-text (2 Sources)

Available from
Jun 5, 2014