Backbone structure of a small helical integral membrane protein: A unique structural characterization

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.
Protein Science (Impact Factor: 2.86). 01/2008; 18(1):134-46. DOI: 10.1002/pro.24
Source: PubMed

ABSTRACT The structural characterization of small integral membrane proteins pose a significant challenge for structural biology because of the multitude of molecular interactions between the protein and its heterogeneous environment. Here, the three-dimensional backbone structure of Rv1761c from Mycobacterium tuberculosis has been characterized using solution NMR spectroscopy and dodecylphosphocholine (DPC) micelles as a membrane mimetic environment. This 127 residue single transmembrane helix protein has a significant (10 kDa) C-terminal extramembranous domain. Five hundred and ninety distance, backbone dihedral, and orientational restraints were employed resulting in a 1.16 A rmsd backbone structure with a transmembrane domain defined at 0.40 A. The structure determination approach utilized residual dipolar coupling orientation data from partially aligned samples, long-range paramagnetic relaxation enhancement derived distances, and dihedral restraints from chemical shift indices to determine the global fold. This structural model of Rv1761c displays some influences by the membrane mimetic illustrating that the structure of these membrane proteins is dictated by a combination of the amino acid sequence and the protein's environment. These results demonstrate both the efficacy of the structural approach and the necessity to consider the biophysical properties of membrane mimetics when interpreting structural data of integral membrane proteins and, in particular, small integral membrane proteins.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many peptides and proteins are attached to or immersed in a biological membrane. In order to understand their function not only the structure but also their topology in the membrane is important. Solution NMR spectroscopy is one of the most often used approaches to determine the orientation and localization of membrane-bound peptides and proteins. Here we give an application-oriented overview on the use of paramagnetic probes for the investigation of membrane-bound peptides and proteins. The examples discussed range from the large pool of antimicrobial peptides, bacterial toxins, cell penetrating peptides to domains of larger proteins or the calcium regulating protein phospholamban. Topological information is obtained in all these examples by the use of either attached or freely mobile paramagnetic tags. For some examples information obtained from the paramagnetic probes was included in the structure determination.
    Molecules 07/2013; 18(7):7407-7435. DOI:10.3390/molecules18077407 · 2.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long-range distance measurements based on paramagnetic relaxation enhancement (PRE) in NMR, quantification of surface water dynamics near biomacromolecules by Overhauser dynamic nuclear polarization (DNP) and sensitivity enhancement by solid-state DNP all depend on introducing paramagnetic species into an otherwise diamagnetic NMR sample. The species can be introduced by site-directed spin labeling, which offers precise control for positioning the label in the sequence of a biopolymer. However, internal flexibility of the spin label gives rise to dynamic processes that potentially influence PRE and DNP behavior and leads to a spatial distribution of the electron spin even in solid samples. Internal dynamics of spin labels and their static conformational distributions have been studied mainly by electron paramagnetic resonance spectroscopy and molecular dynamics simulations, with a large body of results for the most widely applied methanethiosulfonate spin label MTSL. These results are critically discussed in a unifying picture based on rotameric states of the group that carries the spin label. Deficiencies in our current understanding of dynamics and conformations of spin labeled groups and of their influence on NMR observables are highlighted and directions for further research suggested.
    Progress in Nuclear Magnetic Resonance Spectroscopy 07/2013; 72:42-60. DOI:10.1016/j.pnmrs.2013.03.001 · 8.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Integral membrane proteins are one of the most challenging groups of macromolecules despite their apparent conformational simplicity. They manage and drive transport, circulate information, and participate in cellular movements via interactions with other proteins and through intricate conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches, a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.
    04/2012; 2(2):1491-1539. DOI:10.1002/cphy.c110036

Full-text (2 Sources)

Available from
May 23, 2014