Article

Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling.

Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands.
Plant physiology (Impact Factor: 6.56). 02/2009; 149(4):1797-809. DOI: 10.1104/pp.108.133926
Source: PubMed Central

ABSTRACT The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play crucial roles in the signaling network that regulates induced defense responses against biotic stresses. Antagonism between SA and JA operates as a mechanism to fine-tune defenses that are activated in response to multiple attackers. In Arabidopsis (Arabidopsis thaliana), NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) was demonstrated to be required for SA-mediated suppression of JA-dependent defenses. Because ET is known to enhance SA/NPR1-dependent defense responses, we investigated the role of ET in the SA-JA signal interaction. Pharmacological experiments with gaseous ET and the ET precursor 1-aminocyclopropane-1-carboxylic acid showed that ET potentiated SA/NPR1-dependent PATHOGENESIS-RELATED1 transcription, while it rendered the antagonistic effect of SA on methyl jasmonate-induced PDF1.2 and VSP2 expression NPR1 independent. This overriding effect of ET on NPR1 function in SA-JA cross talk was absent in the npr1-1/ein2-1 double mutant, demonstrating that it is mediated via ET signaling. Abiotic and biotic induction of the ET response similarly abolished the NPR1 dependency of the SA-JA signal interaction. Furthermore, JA-dependent resistance against biotic attackers was antagonized by SA in an NPR1-dependent fashion only when the plant-attacker combination did not result in the production of high levels of endogenous ET. Hence, the interaction between ET and NPR1 plays an important modulating role in the fine tuning of the defense signaling network that is activated upon pathogen and insect attack. Our results suggest a model in which ET modulates the NPR1 dependency of SA-JA antagonism, possibly to compensate for enhanced allocation of NPR1 to function in SA-dependent activation of PR genes.

0 Bookmarks
 · 
269 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development.ScopeThe present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception.Conclusions The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
    Annals of Botany 04/2013; · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NEDD8 is an evolutionarily conserved 8 kD protein that is closely related to ubiquitin and that can be conjugated like ubiquitin to specific lysine residues of target proteins in eukaryotes. In contrast to ubiquitin, for which a broad range of substrate proteins is known, only a very limited number of NEDD8 target proteins have been identified to date. Best understood, and also evolutionarily conserved, is the NEDD8-modification (neddylation) of cullins, core subunits of the cullin-RING-type E3 ubiquitin ligases that promote the poly-ubiquitylation of degradation targets in eukaryotes. Here, we show that ML3 is a NEDD8- as well as ubiquitin-modified protein in Arabidopsis thaliana and examine the functional role of ML3 in the plant cell. Our analysis indicates that ML3 resides in the vacuole as well as in ER bodies. ER bodies are Brassicales-specific ER-derived organelles and, similarly to other ER body proteins, ML3 orthologues can only be identified in this order of flowering plants. ML3 gene expression is promoted by wounding as well as by the phytohormone jasmonic acid and repressed by ethylene, signals that are known to induce and repress ER body formation, respectively. Furthermore, ML3 protein abundance is dependent on NAI1, a master regulator of ER body formation in Arabidopsis thaliana. The regulation of ML3 expression and the localization of ML3 in ER bodies and the vacuole is in agreement with a demonstrated importance of ML3 in the defense to herbivore attack. Here, we extent the spectrum of ML3 biological functions by demonstrating a role in response to microbial pathogens.
    Plant physiology 07/2013; · 6.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The jasmonic acid (JA) and salicylic acid (SA) signalling pathways, which mediate induced plant defence responses, can express negative crosstalk. Limited knowledge is available on the effects of this crosstalk on host-plant selection behaviour of herbivores. We report on temporal and dosage effects of such crosstalk on host preference and oviposition-site selection behaviour of the herbivorous spider mite Tetranychus urticae towards Lima bean (Phaseolus lunatus) plants, including underlying mechanisms. Behavioural observations reveal a dynamic temporal response of mites to single or combined applications of JA and SA to the plant, including attraction and repellence, and an antagonistic interaction between SA- and JA-mediated plant responses. Dose-response experiments show that concentrations of 0.001mM and higher of one phytohormone can neutralize the repellent effect of a 1mM application of the other phytohormone on herbivore behaviour. Moreover, antagonism between the two signal-transduction pathways affects phytohormone-induced volatile emission. Our multidisciplinary study reveals the dynamic plant phenotype that is modulated by subtle changes in relative phytohormonal titres and consequences for the dynamic host-plant selection by an herbivore. The longer-term effects on plant-herbivore interactions deserve further investigation.
    Journal of Experimental Botany 06/2014; 65(12):3289-3298. · 5.79 Impact Factor

Full-text (2 Sources)

View
57 Downloads
Available from
May 21, 2014