Structural determinants of integrin binding to the talin rod.

Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom.
Journal of Biological Chemistry (Impact Factor: 4.65). 02/2009; 284(13):8866-76. DOI: 10.1074/jbc.M805937200
Source: PubMed

ABSTRACT The adaptor protein talin serves both to activate the integrin family of cell adhesion molecules and to couple integrins to the actin cytoskeleton. Integrin activation has been shown to involve binding of the talin FERM domain to membrane proximal sequences in the cytoplasmic domain of the integrin beta-subunit. However, a second integrin-binding site (IBS2) has been identified near the C-terminal end of the talin rod. Here we report the crystal structure of IBS2 (residues 1974-2293), which comprises two five-helix bundles, "IBS2-A" (1974-2139) and "IBS2-B" (2140-2293), connected by a continuous helix with a distinct kink at its center that is stabilized by side-chain H-bonding. Solution studies using small angle x-ray scattering and NMR point to a fairly flexible quaternary organization. Using pull-down and enzyme-linked immunosorbent assays, we demonstrate that integrin binding requires both IBS2 domains, as does binding to acidic phospholipids and robust targeting to focal adhesions. We have defined the membrane proximal region of the integrin cytoplasmic domain as the major binding region, although more membrane distal regions are also required for strong binding. Alanine-scanning mutagenesis points to an important electrostatic component to binding. Thermal unfolding experiments show that integrin binding induces conformational changes in the IBS2 module, which we speculate are linked to vinculin and membrane binding.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Vinculin is a talin-binding protein that promotes integrin-mediated cell adhesion, but the mechanisms are not understood. Because talin is a direct activator of integrins, we asked whether and how vinculin regulates the formation of integrin: talin complexes. We report that VD1 (a.a 1-258) and its talin-binding mutant, VD1A50I, bind directly and equally to several β integrin cytoplasmic tails (βCT). Results from competition assays show that VD1, but not VD1A50I, inhibits the interaction of talin (Tn) and talin rod (TnR), but not talin head (TnH) with β3CT. The inhibition observed could be the result of VD1 binding to one or more of the 11 vinculin binding sites (VBSs) in the TnR domain. Our studies demonstrate that VD1 binding to amino acids 482-911, a VBS rich region, in TnR perturbs the interaction of rod with β3CT. The integrin activation assays done using CHOA5 cells show that activated vinculin enhances αIIbβ3 integrin activation and that the effect is dependent on talin. The TnR domain however shows no integrin activation unlike TnH that shows enhanced integrin activation. The overall results indicate that activated vinculin promotes talin-mediated integrin activation by binding to accessible VBSs in TnR and thus displacing the TnR from the β3 subunit. The study presented, defines a novel direct interaction of VD1 with β3CT and provides an attractive explanation for vinculin's ability to potentiate integrin-mediated cell adhesion through directly binding to both TnR and the integrin cytoplasmic tail. J. Cell. Biochem.
    Journal of Cellular Biochemistry 01/2014; · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podocytes are specialized actin-rich epithelial cells that line the kidney glomerular filtration barrier. The interface between the podocyte and the glomerular basement membrane requires integrins, and defects in either α3 or β1 integrin, or the α3β1 ligand laminin result in nephrotic syndrome in murine models. The large cytoskeletal protein talin1 is not only pivotal for integrin activation, but also directly links integrins to the actin cytoskeleton. Here, we found that mice lacking talin1 specifically in podocytes display severe proteinuria, foot process effacement, and kidney failure. Loss of talin1 in podocytes caused only a modest reduction in β1 integrin activation, podocyte cell adhesion, and cell spreading; however, the actin cytoskeleton of podocytes was profoundly altered by the loss of talin1. Evaluation of murine models of glomerular injury and patients with nephrotic syndrome revealed that calpain-induced talin1 cleavage in podocytes might promote pathogenesis of nephrotic syndrome. Furthermore, pharmacologic inhibition of calpain activity following glomerular injury substantially reduced talin1 cleavage, albuminuria, and foot process effacement. Collectively, these findings indicate that podocyte talin1 is critical for maintaining the integrity of the glomerular filtration barrier and provide insight into the pathogenesis of nephrotic syndrome.
    The Journal of clinical investigation 02/2014; · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tight regulation of integrin affinity is critical for hemostasis. A final step of integrin activation is talin binding to two sites within the integrin β cytoplasmic domain. Binding of talin to a membrane-distal NPxY sequence facilitates a second, weaker interaction of talin with an integrin membrane-proximal region (MPR) that is critical for integrin activation. To test the functional significance of these distinct interactions on platelet function in vivo, we generated knock-in mice expressing talin1 mutants with impaired capacity to interact with the β3 integrin MPR (L325R) or NPLY sequence (W359A). Both talin1(L325R) and talin1(W359A) mice were protected from experimental thrombosis. Talin1(L325R) mice, but not talin(W359A) mice, exhibited a severe bleeding phenotype. Activation of αIIbβ3 was completely blocked in talin1(L325R) platelets whereas activation was reduced by approximately 50% in talin1(W359A) platelets. Quantitative biochemical measurements detected talin1(W359A) binding to β3 integrin, albeit with 2.9-fold lower affinity than wild type talin1. The rate of αIIbβ3 activation was slower in Talin1(W359A) platelets which consequently delayed aggregation under static conditions and reduced thrombus formation under physiological flow conditions. Together our data indicates that reduction of talin-β3 integrin binding affinity results in decelerated αIIbβ3 integrin activation and protection from arterial thrombosis without pathological bleeding.
    Blood 02/2014; · 9.78 Impact Factor