Article

Structural determinants of integrin binding to the talin rod.

Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom.
Journal of Biological Chemistry (Impact Factor: 4.65). 02/2009; 284(13):8866-76. DOI: 10.1074/jbc.M805937200
Source: PubMed

ABSTRACT The adaptor protein talin serves both to activate the integrin family of cell adhesion molecules and to couple integrins to the actin cytoskeleton. Integrin activation has been shown to involve binding of the talin FERM domain to membrane proximal sequences in the cytoplasmic domain of the integrin beta-subunit. However, a second integrin-binding site (IBS2) has been identified near the C-terminal end of the talin rod. Here we report the crystal structure of IBS2 (residues 1974-2293), which comprises two five-helix bundles, "IBS2-A" (1974-2139) and "IBS2-B" (2140-2293), connected by a continuous helix with a distinct kink at its center that is stabilized by side-chain H-bonding. Solution studies using small angle x-ray scattering and NMR point to a fairly flexible quaternary organization. Using pull-down and enzyme-linked immunosorbent assays, we demonstrate that integrin binding requires both IBS2 domains, as does binding to acidic phospholipids and robust targeting to focal adhesions. We have defined the membrane proximal region of the integrin cytoplasmic domain as the major binding region, although more membrane distal regions are also required for strong binding. Alanine-scanning mutagenesis points to an important electrostatic component to binding. Thermal unfolding experiments show that integrin binding induces conformational changes in the IBS2 module, which we speculate are linked to vinculin and membrane binding.

0 Bookmarks
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells of the mammary gland are in intimate contact with other cells and with the extracellular matrix (ECM), both of which provide not only a biochemical context, but a mechanical context as well. Cell-mediated contraction allows cells to sense the stiffness of their microenvironment, and respond with appropriate mechanosignaling events that regulate gene expression and differentiation. ECM composition and organization are tightly regulated throughout development of the mammary gland, resulting in corresponding regulation of the mechanical environment and proper tissue architecture. Mechanical regulation is also at play during breast carcinoma progression, as changes in ECM deposition, composition, and organization accompany breast carcinoma. These changes result in stiffer matrices that activate mechanosignaling pathways and thereby induce cell proliferation, facilitate local tumor cell invasion, and promote progression. Thus, understanding the role of forces in the mammary gland is crucial to understanding both normal developmental and pathological processes.
    Cold Spring Harbor perspectives in biology 10/2010; 3(1):a003228. · 9.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis and acute lung injury (ALI) have devastatingly high mortality rates. Both are associated with increased vascular leak, a process regulated by complex molecular mechanisms. We hypothesized that integrin αvβ3 could be an important determinant of vascular leak and endothelial permeability in sepsis and ALI. β3 subunit knockout mice were tested for lung vascular leak after endotracheal LPS, and systemic vascular leak and mortality after intraperitoneal LPS and cecal ligation and puncture. Possible contributory effects of β3 deficiency in platelets and other hematopoietic cells were excluded by bone marrow reconstitution experiments. Endothelial cells treated with αvβ3 antibodies were evaluated for sphingosine-1 phosphate (S1P)–mediated alterations in barrier function, cytoskeletal arrangement, and integrin localization. β3 knockout mice had increased vascular leak and pulmonary edema formation after endotracheal LPS, and increased vascular leak and mortality after intraperitoneal LPS and cecal ligation and puncture. In endothelial cells, αvβ3 antibodies inhibited barrier-enhancing and cortical actin responses to S1P. Furthermore, S1P induced translocation of αvβ3 from discrete focal adhesions to cortically distributed sites through Gi- and Rac1-mediated pathways. Cortical αvβ3 localization after S1P was decreased by αvβ3 antibodies, suggesting that ligation of the αvβ3 with its extracellular matrix ligands is required to stabilize cortical αvβ3 focal adhesions. Our studies identify a novel mechanism by which αvβ3 mitigates increased vascular leak, a pathophysiologic function central to sepsis and ALI. These studies suggest that drugs designed to block αvβ3 may have the unexpected side effect of intensifying sepsis- and ALI-associated vascular endothelial leak.
    American Journal of Respiratory and Critical Care Medicine 01/2012; 185(1):58-66. · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss-of-function mutations of the KRIT1 gene (CCM1) have been associated with the Cerebral Cavernous Malformation (CCM) disease, which is characterized by serious alterations of brain capillary architecture. The KRIT1 protein contains multiple interaction domains and motifs, suggesting that it might act as a scaffold for the assembly of functional protein complexes involved in signaling networks. In previous work, we defined structure-function relationships underlying KRIT1 intramolecular and intermolecular interactions and nucleocytoplasmic shuttling, and found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. Here we report the identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. This interaction was discovered through yeast two-hybrid screening of a mouse embryo cDNA library, and confirmed by pull-down and co-immunoprecipitation assays of recombinant proteins, as well as by co-immunoprecipitation of endogenous proteins in human endothelial cells. Furthermore, using distinct KRIT1 isoforms and mutants, we defined the role of KRIT1 domains in the Nd1-L/KRIT1 interaction. Finally, functional assays showed that Nd1-L may contribute to the regulation of KRIT1 nucleocytoplasmic shuttling and cooperate with KRIT1 in modulating the expression levels of the antioxidant protein SOD2, opening a novel avenue for future mechanistic studies. The identification of Nd1-L as a novel KRIT1 interacting protein provides a novel piece of the molecular puzzle involving KRIT1 and suggests a potential functional cooperation in cellular responses to oxidative stress, thus expanding the framework of molecular complexes and mechanisms that may underlie the pathogenesis of CCM disease.
    PLoS ONE 01/2012; 7(9):e44705. · 3.53 Impact Factor