Article

The Role of STAT-3 in the Induction of Apoptosis in Pancreatic Cancer Cells by Benzyl Isothiocyanate

Department of Pharmaceutical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
CancerSpectrum Knowledge Environment (Impact Factor: 15.16). 02/2009; 101(3):176-93. DOI: 10.1093/jnci/djn470
Source: PubMed

ABSTRACT Benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, has been reported to have anticancer properties, but the mechanism whereby it inhibits growth of human pancreatic cancer cells is incompletely understood.
Human pancreatic cancer cells (BxPC-3, AsPC-1, Capan-2, MiaPaCa-2, and Panc-1) and immortalized human pancreatic cells (HPDE-6) were treated with vehicle or with BITC at 5-40 microM, cell survival was evaluated by sulforhodamine B assay, and apoptosis by caspase-3 and poly-ADP ribose polymerase cleavage or by a commercial assay for cell death. Total and activated signal transducer and activator of transcription-3 (STAT-3) protein expression in the cells were examined by western blotting, STAT-3 mRNA levels by reverse transcription-polymerase chain reaction, and STAT-3 DNA-binding and transcriptional activity by commercially available binding and reporter assays. The effects of BITC treatment on tumor growth, apoptosis, and STAT-3 protein expression in vivo were studied in xenografts of BxPC-3 pancreatic tumor cells in athymic nude mice. All statistical tests were two-sided.
BITC treatment reduced cell survival and induced apoptosis in BxPC-3, AsPC-1, Capan-2, and MiaPaCa-2 cells, and to a much lesser extent in Panc-1 cells, but not in HPDE-6 cells. It also reduced levels of activated and total STAT-3 protein, and as a result, STAT-3 DNA-binding and transcriptional activities. Overexpression of STAT-3 in BxPC-3 cells inhibited BITC-induced apoptosis and restored STAT-3 activity. In mice that were fed BITC (60 micromol/wk, five mice, 10 tumors per group), growth of BxPC-3 pancreatic tumor xenografts was suppressed compared with control mice (at 6 weeks, mean tumor volume of control vs BITC-treated mice = 334 vs 172 mm3, difference =162 mm3, 95% confidence interval = 118 to 204 mm3; P = .008) and tumors had increased apoptosis and reduced STAT-3 protein expression.
BITC induces apoptosis in some types of pancreatic cancer cells by inhibiting the STAT-3 signaling pathway.

Full-text

Available from: Sanjay K Srivastava, May 28, 2015
0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies regarding the association between cruciferous vegetable intake and pancreatic cancer risk have reported inconsistent results. We conducted a meta-analysis to demonstrate the potential association between them. A systematic literature search of papers was conducted in March 2014 using PubMed, EMBASE, and Web of Science, and the references of the retrieved articles were screened. The summary odds ratios (ORs) with 95% confidence interval (CI) for the highest versus the lowest intake of cruciferous vegetables were calculated. Four cohort and five case-control studies were eligible for inclusion. We found a significantly decreased risk of pancreatic cancer associated with the high intake of cruciferous vegetables (OR 0.78, 95% CI 0.64-0.91). Moderate heterogeneity was detected across studies (P = 0.065). There was no evidence of significant publication bias based on Begg's funnel plot (P = 0.917) or Egger's test (P = 0.669). Cruciferous vegetable intake might be inversely associated with pancreatic cancer risk. Because of the limited number of studies included in this meta-analysis, further well-designed prospective studies are warranted to confirm the inverse association between cruciferous vegetable intake and risk of pancreatic cancer.
    World Journal of Surgical Oncology 12/2015; 13(1):454. DOI:10.1186/s12957-015-0454-4 · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast tumors are heterogeneous with a complex etiology. The immune system plays a crucial role in the development of tumors and can facilitate tumor growth pleiotropically. Myeloid derived suppressor cells (MDSCs) generate reactive oxygen species (ROS) and cytokines to suppress T cells, dendritic cells and natural killer (NK) cells. Hence, the inhibition of MDSCs could be an important strategy for anticancer therapeutics. Phenethyl isothiocyanate (PEITC), a bioactive compound present in cruciferous vegetables, is known to have anticancer properties. However, the effects of PEITC administration on the immune system have not been previously reported. In the current study, we evaluated the effects of administering PEITC to immunocompromised NOD-SCID IL2Rγ(-/-) (SCID/NSG) host mice bearing MDA-MB-231 xenografts on MDSCs in the peripheral blood. Our results reveal that oral administration of 12 μmol PEITC attenuated tumor growth by 76%. This was marked tumor-inhibitory phenotype was associated with a significant reduction in the levels of MDSCs bearing the surface markers CD33, CD34 and CD11b in PEITC treated mice, indicating that overall tumor growth suppression by PEITC correlates with inhibition of MDSCs. To the best of our knowledge, this is the first study showing effects of PEITC on MDSCs.
    OncoImmunology 02/2015; 4(2):e981449. DOI:10.4161/2162402X.2014.981449 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is one of the most aggressive malignancies in US adults. Experimental studies have found that antioxidant nutrients could reduce oxidative DNA damage, suggesting that these antioxidants may protect against pancreatic carcinogenesis. Several epidemiologic studies showed that dietary intake of antioxidants was inversely associated with the risk for pancreatic cancer, demonstrating the inhibitory effects of antioxidants on pancreatic carcinogenesis. Moreover, nutraceuticals, the anticancer agents from diet or natural plants, have been found to inhibit the development and progression of pancreatic cancer through the regulation of cellular signaling pathways. Importantly, nutraceuticals also up-regulate the expression of tumor-suppressive microRNAs (miRNAs) and down-regulate the expression of oncogenic miRNAs, leading to the inhibition of pancreatic cancer cell growth and pancreatic cancer stem cell self-renewal through modulation of cellular signaling network. Furthermore, nutraceuticals also regulate epigenetically deregulated DNAs and miRNAs, leading to the normalization of altered cellular signaling in pancreatic cancer cells. Therefore, nutraceuticals could have much broader use in the prevention and/or treatment of pancreatic cancer in combination with conventional chemotherapeutics. However, more in vitro mechanistic experiments, in vivo animal studies, and clinical trials are needed to realize the true value of nutraceuticals in the prevention and/or treatment of pancreatic cancer.
    Pancreas 01/2015; 44(1):1-10. DOI:10.1097/MPA.0000000000000257 · 3.01 Impact Factor