Inhibition of Class I Phosphoinositide 3-Kinase Activity Impairs Proliferation and Triggers Apoptosis in Acute Promyelocytic Leukemia without Affecting Atra-Induced Differentiation

Centre for Cell Signalling, Queen Mary University of London, Institute of Cancer, Barts and The London School of Medicine, John Vane Science Centre University College London, London, United Kingdom.
Cancer Research (Impact Factor: 9.33). 02/2009; 69(3):1027-36. DOI: 10.1158/0008-5472.CAN-08-2608
Source: PubMed


We have investigated the role of phosphoinositide 3-kinases (PI3Ks) in the in vitro pathophysiology of acute promyelocytic leukemia (APL) and in the response to treatment with all-trans-retinoic-acid (ATRA), utilizing a range of novel inhibitors that target individual or all catalytic class I isoforms of PI3K (p110alpha, p110beta, p110delta, and p110gamma). ATRA-induced phosphorylation of the Akt kinase and ribosomal S6 protein in APL cells was sensitive to class I PI3K, and p110beta or p110delta inhibitors, and to the mammalian target of rapamycin (mTOR) inhibitor rapamycin. In primary APL, inhibition of p110beta or p110delta triggered apoptosis in the absence or presence of ATRA. Class I PI3K inhibition could also reverse ATRA-induced protection of these cells against doxorubicin and arsenic trioxide, correlating with impaired induction of the antiapoptotic MCL-1 protein. The differentiation-inducing effects of ATRA were not dependent on class I PI3K/mTOR. In summary, class I PI3K signaling, mediated by p110beta and p110delta, plays an important role in basal and ATRA-induced cell survival mechanisms in APL. Addition of PI3K inhibitors to induction treatment regimens may provide therapeutic benefit.

6 Reads
  • Source
    • "It has been well identified that the PI3K/Akt signaling pathway is over activated in AML cells, which controls the expression and function of numerous proteins that are necessary for tumor cell MDR [32] [33] [34] [35]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sialyl Lewis X (sLe X, CD15s) is a key antigen produced on tumor cell surfaces during multidrug resistance (MDR) development. The present study investigated the effect of α1, 3 fucosyltransferase VII (FucT VII) and α2, 3 sialyltransferase IV (ST3Gal IV) on sLe X oligosaccharides synthesis as well as their impact on MDR development in acute myeloid leukemia cells (AML). FUT7 and ST3GAL4 were overexpressed in three AML MDR cells and bone marrow mononuclear cells (BMMC) of AML patients with MDR by real-time polymerase chain reaction (PCR). A close association was found between the expression levels of FUT7 and ST3GAL4 and the amount of sLe X oligosaccharides, as well as the phenotypic variation of MDR of HL60 and HL60/ADR cells both in vitro and in vivo. Manipulation of these two genes' expression modulated the activity of phosphoinositide-3 kinase (PI3K)/Akt signaling pathway, thereby regulating the proportionally mutative expression of P-glycoprotein (P-gp) and multidrug resistance related protein 1 (MRP1), both of which are known to be involved in MDR. Blocking the PI3K/Akt pathway by its specific inhibitor LY294002 or Akt short hairpin RNA (shRNA) resulted in the reduced MDR of HL60/ADR cells. This study indicated that sLe X involved in the development of MDR of AML cells probably through FUT7 and ST3GAL4 regulating the activity of PI3K/Akt signaling pathway and the expression of P-gp and MRP1.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 06/2014; 1842(9). DOI:10.1016/j.bbadis.2014.06.014 · 4.88 Impact Factor
  • Source
    • "IC87114 did not appear to enhance the activity of etoposide in terms of proliferation and survival of normal hematopoietic progenitors.22 Of note, this molecule has also shown activity against acute promyelocytic leukemia cells in a preclinical study.23 In acute promyelocytic leukemia, inhibition of p110-beta and p110-delta triggered apoptosis in the presence or absence of all-trans retinoic acid. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the last decade, the advent of biological targeted therapies has revolutionized the management of several types of cancer, especially in the realm of hematologic malignancies. One of these pathways, and the center of this review, is the phosphatidylinositol-3-kinase (PI3K) pathway. The PI3K pathway seems to play an important role in the pathogenesis and survival advantage in hematologic malignancies, such as leukemia, lymphoma, and myeloma. The objectives of the present review, hence, are to describe the current knowledge on the PI3K pathway and its isoforms, and to summarize preclinical and clinical studies using PI3K inhibitors, focusing on the advances made in hematologic malignancies.
    OncoTargets and Therapy 02/2014; 7:333-342. DOI:10.2147/OTT.S34641 · 2.31 Impact Factor
  • Source
    • "However, PI3k/Akt pathway inhibition promoted apoptosis via activation of caspase-3. Studies in acute promyelocytic leukemia cells have shown that treatment with the PI3k inhibitor reverses the protective effect of ATRA against apoptosis [43]. Additionally, recent reports have shown that Akt activation suppresses the transactivation of RARα in lung cancer cells [44]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background All-trans retinoic acid (ATRA) is currently being used in clinical trials for cancer treatment. The use of ATRA is limited because some cancers, such as lung cancer, show resistance to treatment. However, little is known about the molecular mechanisms that regulate resistance to ATRA treatment. Akt is a kinase that plays a key role in cell survival and cell invasion. Akt is often activated in lung cancer, suggesting its participation in resistance to chemotherapy. In this study, we explored the hypothesis that activation of the Akt pathway promotes resistance to ATRA treatment at the inhibition of cell survival and invasion in lung cancer. We aimed to provide guidelines for the proper use of ATRA in clinical trials and to elucidate basic biological mechanisms of resistance. Results We performed experiments using the A549 human lung adenocarcinoma cell line. We found that ATRA treatment promotes PI3k-Akt pathway activation through transcription-independent mechanisms. Interestingly, ATRA treatment induces the translocation of RARα to the plasma membrane, where it colocalizes with Akt. Immunoprecipitation assays showed that ATRA promotes Akt activation mediated by RARα-Akt interaction. Activation of the PI3k-Akt pathway by ATRA promotes invasion through Rac-GTPase, whereas pretreatment with 15e (PI3k inhibitor) or over-expression of the inactive form of Akt blocks ATRA-induced invasion. We also found that treatment with ATRA induces cell survival, which is inhibited by 15e or over-expression of an inactive form of Akt, through a subsequent increase in the levels of the active form of caspase-3. Finally, we showed that over-expression of the active form of Akt significantly decreases expression levels of the tumor suppressors RARβ2 and p53. In contrast, over-expression of the inactive form of Akt restores RARβ2 expression in cells treated with ATRA, indicating that activation of the PI3k-Akt pathway inhibits the expression of ATRA target genes. Conclusion Our results demonstrate that rapid activation of Akt blocks transcription-dependent mechanism of ATRA, promotes invasion and cell survival and confers resistance to retinoic acid treatment in lung cancer cells. These findings provide an incentive for the design and clinical testing of treatment regimens that combine ATRA and PI3k inhibitors for lung cancer treatment.
    Molecular Cancer 05/2013; 12(1):44. DOI:10.1186/1476-4598-12-44 · 4.26 Impact Factor
Show more


6 Reads