Article

Valoración de opciones reales: Dificultades, problemas y errores

IESE Business School, IESE Research Papers 01/2008;
Source: RePEc

ABSTRACT Las f�rmulas de valoraci�n de opciones financieras se basan en el arbitraje (la posibilidad de formar una cartera r�plica, esto es, que proporciona unos flujos id�nticos a los de la opci�n financiera) y son muy exactas. Sin embargo, veremos que muy pocas veces tiene sentido utilizar directamente estas f�rmulas para valorar opciones reales, porque las opciones reales no son casi nunca replicables. Sin embargo, podemos modificar las f�rmulas para tener en cuenta la no replicabilidad. Los problemas con los que nos encontramos al valorar opciones reales son: 1) dificultad para definir los par�metros necesarios para valorar las opciones reales; 2) dificultad para definir y cuantificar la volatilidad de las fuentes de incertidumbre, y 3) dificultad para calibrar la exclusividad de la opci�n. Estos tres factores hacen que la valoraci�n de las opciones reales sea, en general, dif�cil, y casi siempre much�simo menos exacta y m�s cuestionable que la valoraci�n de las opciones financieras. Adem�s, es mucho m�s dif�cil comunicar la valoraci�n de las opciones reales que la de un proyecto de inversi�n ordinario, por su mayor complejidad t�cnica.

1 Bookmark
 · 
293 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper develops a model of the optimal investment strategy for a firm confronted with a sequence of technological innovations. We incorporate many of the most important characteristics of real-world technology markets. For example, we permit innovations to be stochastic in their arrival times and their profitability. We also incorporate learning so that firms adopting current innovations become better able to benefit from future innovations. The model yields four distinct investment strategies. The model is then used to predict actual firm policy. These implications are discussed and compared with observed firm behavior.
    Journal of Financial Economics. 01/1995;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Authors’ summary: “If options are correctly priced in the market, it should not be possible to make sure profits by creating portfolios of long and short positions in options and their underlying stocks. Using this principle, a theoretical valuation formula for options is derived. Since almost all corporate liabilities can be viewed as combinations of options, the formula and the analysis that led to it are also applicable to corporate liabilities such as common stock, corporate bonds, and warrants. In particular, the formula can be used to derive the discount that should be applied to a corporate bond because of the possibility of default.” The article is arguably one of the most important papers within finance theory to date and allows us to price various derivatives, including options on commodities, financial assets and even pricing of employee stock options. Following loosely on a PhD thesis written by University of Chicago student James Boness, they developed an analytical model which we now know; The Black-Scholes Option Pricing formula, used as a closed form solution to price European vanilla options. Merton and Scholes received the 1997 Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel for their work; Black died in 1995.
    Journal of Political Economy 02/1973; 81(3):637-54. · 2.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current interest in real options reflects the dramatic increase in the uncertainty of the business environment. Viewed narrowly, the real options approach is the extension of financial option pricing models to the valuation of options on real (that is, nonfinancial) assets. More broadly, the real options approach is a way of thinking that helps managers formulate their strategic options-the future opportunities that are created by today's investments-while considering their likely effect on shareholder value. 2000 Morgan Stanley.
    Journal of Applied Corporate Finance 01/2000; 13(2):15-28.

Full-text

Download
8 Downloads
Available from