ChemInform Abstract: CuO Nanoparticles Catalyzed C—N, C—O, and C—S Cross-Coupling Reactions: Scope and Mechanism

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
The Journal of Organic Chemistry (Impact Factor: 4.72). 02/2009; 74(5):1971-6. DOI: 10.1021/jo8024253
Source: PubMed


CuO nanoparticles have been studied for C-N, C-O, and C-S bond formations via cross-coupling reactions of nitrogen, oxygen, and sulfur nucleophiles with aryl halides. Amides, amines, imidazoles, phenols, alcohols and thiols undergo reactions with aryl iodides in the presence of a base such as KOH, Cs(2)CO(3), and K(2)CO(3) at moderate temperature. The procedure is simple, general, ligand-free, and efficient to afford the cross-coupled products in high yield.

233 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carboxylate-capped CuO nanoparticles were obtained via a simple solventless route, based on the thermal decomposition at 120 °C of solid precursors. The reaction mixture consisted of copper acetate monohydrate, acting as the CuO precursor, and different organic carboxylic acids (lauric, phenylvaleric or 3,6,9-trioxadecanoic acid) used as the capping agent. The proposed method, in good agreement with environmentally friendly practices, produced dry nanoparticles, thereby totally eliminating the need of washing, filtration, or other downstream steps. Transmission electron micrographs show crystalline roughly spherical CuO nanoparticles with average diameters between 3.1 and 5.5 nm depending on the capping ligand. The laurate-capped CuO nanoparticles showed a paramagnetic behaviour at room temperature, while a weak ferromagnetic component was detected at low temperature (<40 K). It was also proved that the chemical structure of the carboxylic acid tail enabled the straightforward dispersibility of nanoparticles in common solvents and assisted in the deposition of the material as thin films.
    Journal of Nanoparticle Research 08/2012; 14(8). DOI:10.1007/s11051-012-1053-8 · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CuO is an important transition metal oxide with a narrow bandgap (Eg = 1.2 eV). CuO has been used as a catalyst, a gas sensor, in anode materials for Li ion batteries. CuO has also been used to prepare high temperature superconductors and magnetoresistance materials. In this paper, CuO with urchin-like morphologies has been synthesized via a simple reflux method. The reflux method has advantages over other solution-based techniques, such as ease of operation, safety, and high yield (95%). XRD results showed pure tenorite CuO was produced. FE-SEM exhibited an urchin-like morphology of CuO, which is composed of aggregates of nanosized strips. HR-TEM showed that the strips were single crystals with the lattice fringe of 2.3 Å, which corresponds to (111). DSC and TGA results suggested that as-synthesized CuO had high thermal stability. Time-dependent experiments were conducted to illustrate the evolution of the urchin-like morphology and crystal phase formation of CuO. The effects of copper sources and precipitators on the phase and morphology of the products were studied. As-synthesized CuO showed much better catalytic performance, increased yield (from 64.3% to 89.5%) for olefin epoxidation than commercial CuO and CuO prepared by thermal decomposition of copper hydroxide.
    Chemistry of Materials 04/2009; 21(7). DOI:10.1021/cm802915m · 8.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 07/2009; 40(30). DOI:10.1002/chin.200930033
Show more