Chromosome 13q13-q14 locus overlaps mood and psychotic disorders: the relevance for redefining phenotype.

Department of Psychiatry, Laval University, Québec, QC, Canada.
European journal of human genetics: EJHG (Impact Factor: 3.56). 02/2009; 17(8):1034-42. DOI: 10.1038/ejhg.2008.268
Source: PubMed

ABSTRACT The nosology of major psychoses is challenged by the findings that schizophrenia (SZ) and bipolar disorder (BP) share several neurobiological, neuropsychological and clinical phenotypic characteristics. Moreover, several vulnerability loci or genes may be common to the two DSM disorders. We previously reported, in a sample of 21 kindreds (sample 1), a genome-wide suggestive linkage in 13q13-q14 with a common locus (CL) phenotype that crossed the diagnostic boundaries by combining SZ, BP and schizoaffective disorders. Our objectives were to test phenotype specificity in a separate sample (sample 2) of 27 kindreds from Eastern Quebec and to also analyze the combined sample of 48 kindreds (1274 family members). We performed nonparametric and parametric analyses and tested as phenotypes: SZ alone, BP alone, and a CL phenotype. We replicated in sample 2 our initial finding with CL with a maximum NPL(pair) score of 3.36 at D13S1272 (44 Mb), only 2.1 Mb telomeric to our previous maximum result. In the combined sample, the peak with CL was at marker D13S1297 (42.1 Mb) with a NPL(pair) score reaching 5.21, exceeding that obtained in each sample and indicating consistency across the two samples. Our data suggest a susceptibility locus in 13q13-q14 that is shared by schizophrenia and mood disorder. That locus would be additional to another well documented and more distal 13q locus where the G72/G30 gene is mapped.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigating the living brain remains one of the major obstacles in psychiatry research in order to better understand the biological underpinning of brain disorders. Novel approaches are needed to study brain functions indirectly. Since it is part of the central nervous system, retinal functions as measured with the flash electroretinogram (ERG) may reflect the central dysfunctions reported in psychiatric disorders. This review describes the flash ERG anomalies reported in patients with psychiatric disorders such as seasonal affective disorder, schizophrenia, autism spectrum disorder and drug addiction and discusses how changes in retinal functions might be used as biomarkers for psychiatric disorder as well as a potential aid to diagnosis in psychiatry.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 10/2013; · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: We previously reported a genome-wide significant linkage for major psychosis in chromosome 13q13-q14. METHODS: An association analysis was conducted in 247 unrelated DSM-IV schizophrenia (SZ) patients and 250 unrelated control subjects from the Eastern Quebec population genotyped with 2150 single nucleotide polymorphisms in 13q13-q14. We also used the kindred sample where linkage was detected (125 SZ, 120 bipolar disorder [BD] and 36 schizoaffective disorder patients vs. 467 unaffected adult relatives) for replication. RESULTS: An association of the T allele of rs1156026 found in the case-control sample (odds ratio [OR] = 1.81, p = 4×10(-6), false discovery rate = .01) was replicated in the kindred sample (OR = 1.54, p = .01), strengthening the overall association evidence (p = 8×10(-7)). The effect size increased in the subset of unrelated patients with a family history (OR = 2.28) and in the 15 families where SZ was predominant (OR = 2.03). In the kindred sample, onset of either SZ or BD was, on average, 5 years earlier for T/T compared with C/C homozygotes, leading to stronger association in patients with onset before 26 years of age (SZ: OR = 2.40, p = 1.3×10(-4); SZ, BD, and schizoaffective disorder combined: OR = 1.87, p = 8×10(-5)). CONCLUSIONS: Case-control and family-based association provided evidence of a locus at 13q13-q14 related to SZ. The proximity of the associated single nucleotide polymorphism with the linkage signal and the extension of the associated phenotype to major psychosis with younger age of onset indicate congruence between the linkage and association signals. The rs1156026 association is novel and factors explaining its nondetection in previous studies are discussed.
    Biological psychiatry 04/2013; · 8.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review provides a comprehensive overview of clinical and molecular genetic as well as pharmacogenetic studies regarding the clinical phenotype of "psychotic depression." Results are discussed with regard to the long-standing debate on categorical vs dimensional disease models of affective and psychotic disorders on a continuum from unipolar depression over bipolar disorder and schizoaffective disorder to schizophrenia. Clinical genetic studies suggest a familial aggregation and a considerable heritability (39%) of psychotic depression partly shared with schizoaffective disorder, schizophrenia, and affective disorders. Molecular genetic studies point to potential risk loci of psychotic depression shared with schizoaffective disorder (1q42, 22q11, 19p13), depression, bipolar disorder, and schizophrenia (6p, 8p22, 10p13-12, 10p14, 13q13-14, 13q32, 18p, 22q11-13) and several vulnerability genes possibly contributing to an increased risk of psychotic symptoms in depression (eg, BDNF, DBH, DTNBP1, DRD2, DRD4, GSK-3beta, MAO-A). Pharmacogenetic studies implicate 5-HTT, TPH1, and DTNBP1 gene variation in the mediation of antidepressant treatment response in psychotic depression. Genetic factors are suggested to contribute to the disease risk of psychotic depression in partial overlap with disorders along the affective-psychotic spectrum. Thus, genetic research focusing on psychotic depression might inspire a more dimensional, neurobiologically and symptom-oriented taxonomy of affective and psychotic disorders challenging the dichotomous Kraepelinian view. Additionally, pharmacogenetic studies might aid in the development of a more personalized treatment of psychotic depression with an individually tailored antidepressive/antipsychotic pharmacotherapy according to genotype.
    Schizophrenia Bulletin 03/2013; · 8.61 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014