Article

Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS.

Howard Hughes Medical Institute, Department of Genetics, Section of Comparative Medicine, and Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2009; 106(5):1392-7. DOI: 10.1073/pnas.0813045106
Source: PubMed

ABSTRACT Recent studies suggest that superoxide dismutase 1 (SOD1)-linked amyotrophic lateral sclerosis results from destabilization and misfolding of mutant forms of this abundant cytosolic enzyme. Here, we have tracked the expression and fate of a misfolding-prone human SOD1, G85R, fused to YFP, in a line of transgenic G85R SOD1-YFP mice. These mice, but not wild-type human SOD1-YFP transgenics, developed lethal paralyzing motor symptoms at 9 months. In situ RNA hybridization of spinal cords revealed predominant expression in motor neurons in spinal cord gray matter in all transgenic animals. Concordantly, G85R SOD-YFP was diffusely fluorescent in motor neurons of animals at 1 and 6 months of age, but at the time of symptoms, punctate aggregates were observed in cell bodies and processes. Biochemical analyses of spinal cord soluble extracts indicated that G85R SOD-YFP behaved as a misfolded monomer at all ages. It became progressively insoluble at 6 and 9 months of age, associated with presence of soluble oligomers observable by gel filtration. Immunoaffinity capture and mass spectrometry revealed association of G85R SOD-YFP, but not WT SOD-YFP, with the cytosolic chaperone Hsc70 at all ages. In addition, 3 Hsp110's, nucleotide exchange factors for Hsp70s, were captured at 6 and 9 months. Despite such chaperone interactions, G85R SOD-YFP formed insoluble inclusions at late times, containing predominantly intermediate filament proteins. We conclude that motor neurons, initially "compensated" to maintain the misfolded protein in a soluble state, become progressively unable to do so.

0 Followers
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc is the authoritative metal which is present in our body and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Fundamental and Clinical Pharmacology 02/2015; DOI:10.1111/fcp.12110 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proteostasis network has evolved to support protein folding under normal conditions and to expand this capacity in response to proteotoxic stresses. Nevertheless, many pathogenic states are associated with protein misfolding, revealing in vivo limitations on quality control mechanisms. One contributor to these limitations is the physical characteristics of misfolded proteins, as exemplified by amyloids, which are largely resistant to clearance. However, other limitations imposed by the cellular environment are poorly understood. To identify cell-based restrictions on proteostasis capacity, we determined the mechanism by which thermal stress cures the [PSI(+)]/Sup35 prion. Remarkably, Sup35 amyloid is disassembled at elevated temperatures by the molecular chaperone Hsp104. This process requires Hsp104 engagement with heat-induced non-prion aggregates in late cell-cycle stage cells, which promotes its asymmetric retention and thereby effective activity. Thus, cell division imposes a potent limitation on proteostasis capacity that can be bypassed by the spatial engagement of a quality control factor.
    eLife Sciences 12/2014; 3. DOI:10.7554/eLife.04288 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS; Lou Gehrig's disease) affects motor neurons (MNs) in the brain and spinal cord. Understanding the pathophysiology of this condition seems crucial for therapeutic design, yet few electrophysiological studies in actively degenerating animal models have been reported. Here, we report a novel preparation of acute slices from adult mouse spinal cord, allowing visualized whole cell patch-clamp recordings of fluorescent lumbar MN cell bodies from ChAT-eGFP or superoxide dismutase 1-yellow fluorescent protein (SOD1YFP) transgenic animals up to 6 mo of age. We examined 11 intrinsic electrophysiologic properties of adult ChAT-eGFP mouse MNs and classified them into four subtypes based on these parameters. The subtypes could be principally correlated with instantaneous (initial) and steady-state firing rates. We used retrograde tracing using fluorescent dye injected into fast or slow twitch lower extremity muscle with slice recordings from the fluorescent-labeled lumbar MN cell bodies to establish that fast and slow firing MNs are connected with fast and slow twitch muscle, respectively. In a G85R SOD1YFP transgenic mouse model of ALS, which becomes paralyzed by 5-6 mo, where MN cell bodies are fluorescent, enabling the same type of recording from spinal cord tissue slices, we observed that all four MN subtypes were present at 2 mo of age. At 4 mo, by which time substantial neuronal SOD1YFP aggregation and cell loss has occurred and symptoms have developed, one of the fast firing subtypes that innvervates fast twitch muscle was lost. These results begin to describe an order of the pathophysiologic events in ALS.
    Proceedings of the National Academy of Sciences 11/2014; DOI:10.1073/pnas.1419497111 · 9.81 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
May 30, 2014