Retroendocytosis pathway of ABCA1/apoA-I contributes to HDL formation.

Kyoto University, Japan.
Genes to Cells (Impact Factor: 2.86). 03/2009; 14(2):191-204. DOI: 10.1111/j.1365-2443.2008.01261.x
Source: PubMed

ABSTRACT ATP-binding cassette protein A1 (ABCA1) mediates transfer of cellular free cholesterol and phospholipids to apolipoprotein A-I (apoA-I), an extracellular acceptor in plasma, to form high-density lipoprotein (HDL). It is currently unknown to what extent ABCA1 endocytosis and recycling contribute to the HDL formation. To address this issue, we expressed human ABCA1 constructs with either an extracellular HA tag or an intracellular GFP tag in cells, and used this system to characterize endocytosis and recycling of ABCA1 and apoA-I. Under basal conditions, ABCA1 and apoA-I are endocytosed via a clathrin- and Rab5-mediated pathway and recycled rapidly back to the cell surface, at least in part via a Rab4-mediated route; approximately 30% of the endocytosed ABCA1 is recycled back to the cell surface. When receptor-mediated endocytosis is inhibited, the level of ABCA1 at the cell surface increases and apoA-I internalization is blocked. Under these conditions, apoA-I mediated cholesterol efflux from cells that have accumulated lipoprotein-derived cholesterol is decreased, whereas efflux from cells without excess cholesterol is increased. These results suggest that the retroendocytosis pathway of ABCA1/apoA-I contributes to HDL formation when excess lipoprotein-derived cholesterol has accumulated in cells.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABCA1 mediates the secretion of cellular free cholesterol and phospholipids to an extracellular acceptor, apolipoprotein AI, to form nascent high-density lipoprotein (HDL). Thus, ABCA1 is a key molecule in cholesterol homeostasis. Functional studies of certain Tangier disease mutations demonstrate that ABCA1 has multiple activities, including plasma membrane remodeling and apoAI binding to cell surface, which participate in nascent HDL biogenesis. Recent advances in our understanding of ABCA1 have demonstrated that ABCA1also mediates unfolding the N terminus of apoAI on the cell surface, followed by lipidation of apoAI and release of nascent HDL. Although ABCA1-mediated cholesterol efflux to apoAI can occur on the plasma membrane, the role of apoAI retroendocytosis during cholesterol efflux may play a role in macrophage foam cells that store cholesterol esters in cytoplasmic lipid droplets. © 2014 BioFactors, 2014
    BioFactors 11/2014; 40(6). DOI:10.1002/biof.1187 · 3.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP-binding cassette protein A1 (ABCA1) plays a key role in eliminating excess cholesterol from peripheral cells by generating nascent high-density lipoprotein (HDL). However, it remains unclear whether both phospholipids and cholesterol are directly loaded onto apolipoprotein A-I (apoA-I) by ABCA1. To identify the amino acid residues of ABCA1 involved in substrate recognition and transport, we applied arginine scan mutagenesis to residues L821-E843 of human ABCA1 and predicted the environment to which each residue is exposed. The relative surface expression of each mutant suggested that residues L821-E843 pass through the plasma membrane as TM6, and the four residues (S826, F830, L834, and V837) of TM6 are exposed to the hydrophilic internal cavity of ABCA1. Furthermore, we showed that L834 is critical for the function of ABCA1.
    Bioscience Biotechnology and Biochemistry 01/2015; DOI:10.1080/09168451.2014.993358 · 1.21 Impact Factor
  • Source
    Dataset: Cox et al


Available from
Sep 11, 2014