Recommended tests for association in 2 x 2 tables.

Unit for Applied Clinical Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
Statistics in Medicine (Impact Factor: 2.04). 03/2009; 28(7):1159-75. DOI: 10.1002/sim.3531
Source: PubMed

ABSTRACT The asymptotic Pearson's chi-squared test and Fisher's exact test have long been the most used for testing association in 2x2 tables. Unconditional tests preserve the significance level and generally are more powerful than Fisher's exact test for moderate to small samples, but previously were disadvantaged by being computationally demanding. This disadvantage is now moot, as software to facilitate unconditional tests has been available for years. Moreover, Fisher's exact test with mid-p adjustment gives about the same results as an unconditional test. Consequently, several better tests are available, and the choice of a test should depend only on its merits for the application involved. Unconditional tests and the mid-p approach ought to be used more than they now are. The traditional Fisher's exact test should practically never be used.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective To repair and refine a previously proposed method for statistical analysis of association between migraine and menstruation.Background Menstrually related migraine (MRM) affects about 20% of female migraineurs in the general population. The exact pathophysiological link from menstruation to migraine is hypothesized to be through fluctuations in female reproductive hormones, but the exact mechanisms remain unknown. Therefore, the main diagnostic criterion today is concurrency of migraine attacks with menstruation. Methods aiming to exclude spurious associations are wanted, so that further research into these mechanisms can be performed on a population with a true association.Methods The statistical method is based on a simple two-parameter null model of MRM (which allows for simulation modeling), and Fisher's exact test (with mid-p correction) applied to standard 2 × 2 contingency tables derived from the patients' headache diaries. Our method is a corrected version of a previously published flawed framework. To our best knowledge, no other published methods for establishing a menstruation–migraine association by statistical means exist today.ResultsThe probabilistic methodology shows good performance when subjected to receiver operator characteristic curve analysis. Quick reference cutoff values for the clinical setting were tabulated for assessing association given a patient's headache history.Conclusions In this paper, we correct a proposed method for establishing association between menstruation and migraine by statistical methods. We conclude that the proposed standard of 3-cycle observations prior to setting an MRM diagnosis should be extended with at least one perimenstrual window to obtain sufficient information for statistical processing.
    Headache The Journal of Head and Face Pain 11/2014; · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In clinical trials with binary endpoints, the required sample size does not depend only on the specified type I error rate, the desired power and the treatment effect but also on the overall event rate which, however, is usually uncertain. The internal pilot study design has been proposed to overcome this difficulty. Here, nuisance parameters required for sample size calculation are re-estimated during the ongoing trial and the sample size is recalculated accordingly. We performed extensive simulation studies to investigate the characteristics of the internal pilot study design for two-group superiority trials where the treatment effect is captured by the relative risk. As the performance of the sample size recalculation procedure crucially depends on the accuracy of the applied sample size formula, we firstly explored the precision of three approximate sample size formulae proposed in the literature for this situation. It turned out that the unequal variance asymptotic normal formula outperforms the other two, especially in case of unbalanced sample size allocation. Using this formula for sample size recalculation in the internal pilot study design assures that the desired power is achieved even if the overall rate is mis-specified in the planning phase. The maximum inflation of the type I error rate observed for the internal pilot study design is small and lies below the maximum excess that occurred for the fixed sample size design.
    Communication in Statistics- Simulation and Computation 08/2013; 42(7). · 0.29 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014