Conduction at Domain Walls in Oxide Multiferroics

Department of Physics, University of California, Berkeley, 94720 California, USA.
Nature Material (Impact Factor: 36.5). 02/2009; 8(3):229-34. DOI: 10.1038/nmat2373
Source: PubMed


Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

Full-text preview

Available from:
  • Source
    • "Topological defects are widespread in condensed matter physics, and interactions among topological defects and the resulting configurations of numerous topological defects can be associated with various intriguing phenomena123 because they are insensitive to continuous deformation or perturbation. Topological defects in hexagonal RMnO3 (R = Ho to Lu, Y, and Sc), domain walls/vortices, are responsible for their multiferroicity which is characterized by the coexistence of multi-ferroic orders. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Topological vortices with swirling ferroelectric, magnetic and structural anti-phase relationship in hexagonal RMnO3 (R = Ho to Lu, Y, and Sc) have attracted much attention because of their intriguing behaviors. Herein, we report the structure of multiferroic vortex domains in YMnO3 at atomic scale using state-of-the-art aberration-corrected scanning transmission electron microscopy (STEM). Two types of displacements were identified among six domain walls (DWs); six translation-ferroelectric domains denoted by α+, γ-, β+, α-, γ+ and β-, respectively, were recognized, demonstrating the interlocking nature of the anti-vortex domain. We found that the anti-vortex core is about four unit cells wide. In addition, we reconstructed the vortex model with three swirling pairs of DWs along the [001] direction. These results are very critical for the understanding of topological behaviors and unusual properties of the multiferroic vortex.
    Scientific Reports 09/2013; 3:2741. DOI:10.1038/srep02741 · 5.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cette thèse porte sur l'étude de couches minces ferroélectriques à base de BaTiO3 déposées par pulvérisation cathodique. Ces matériaux permettent par exemple de réaliser des condensateurs accordables ou encore des mémoires non-volatiles pour le stockage d'informations. Cependant, leurs propriétés diélectriques sont considérablement dégradées par des effets extrinsèques d'interfaces; film/substrat ou encore film/électrode. Dans ce contexte, la spectroscopie de photoémission (XPS) a été utilisée pour quantifier les états électroniques et chimiques de ces interfaces avec une approche in-situ. L'étude sur la formation du contact film/électrode a permis de mesurer la hauteur de barrière de Schottky partiellement responsable des caractéristiques capacités – tensions des couches. Des phénomènes de ségrégation ont été mis en évidence révélant une profonde instabilité de la stoechiométrie de surface. Enfin, la conséquence d'un dopage au niobium dans les couches minces de BaTiO3 est discutée du point de vue des modes de compensation, de la solubilité du dopant et des propriétés diélectriques.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article is a summary report on the Topical Issue on Magnetoelectric Interaction Phenomena in Crystals. The topics discussed in this special issue are reviewed and discussed in the context of prior and current research activities in the field. New developments during the past five years are pointed out and an outlook on possible future trends in research on the magnetoelectric effect is given. PACS. 70 Condensed matter: electronic structure, electrical, magnetic and optical properties - 68 Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties)
    Physics of Condensed Matter 10/2009; 71(3):293-297. DOI:10.1140/epjb/e2009-00266-4 · 1.35 Impact Factor
Show more