Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia.

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
Nature (Impact Factor: 42.35). 02/2009; 458(7239):776-9. DOI: 10.1038/nature07737
Source: PubMed

ABSTRACT Although the role of Hedgehog (Hh) signalling in embryonic pattern formation is well established, its functions in adult tissue renewal and maintenance remain unclear, and the relationship of these functions to cancer development has not been determined. Here we show that the loss of Smoothened (Smo), an essential component of the Hh pathway, impairs haematopoietic stem cell renewal and decreases induction of chronic myelogenous leukaemia (CML) by the BCR-ABL1 oncoprotein. Loss of Smo causes depletion of CML stem cells--the cells that propagate the leukaemia--whereas constitutively active Smo augments CML stem cell number and accelerates disease. As a possible mechanism for Smo action, we show that the cell fate determinant Numb, which depletes CML stem cells, is increased in the absence of Smo activity. Furthermore, pharmacological inhibition of Hh signalling impairs not only the propagation of CML driven by wild-type BCR-ABL1, but also the growth of imatinib-resistant mouse and human CML. These data indicate that Hh pathway activity is required for maintenance of normal and neoplastic stem cells of the haematopoietic system and raise the possibility that the drug resistance and disease recurrence associated with imatinib treatment of CML might be avoided by targeting this essential stem cell maintenance pathway.

Download full-text


Available from: Hyog Young Kwon, Dec 17, 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Hedgehog (Hh) pathway is aberrantly activated in a number of tumors. In medulloblastoma, basal cell carcinoma, and rhabdomyosarcoma, mutations in Hh pathway genes lead to ligand-independent pathway activation. In many other tumor types, ligand-dependent activation of Hh signaling is potentiated through crosstalk with other critical molecular signaling pathways. Among such pathways, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch are of particular interest because agents that selectively inhibit these pathways are available and can be readily combined with agents such as vismodegib, sonidegib (LDE225), and BMS-833923, which target smoothened—a key Hh pathway regulator. Numerous preclinical studies have revealed the ways in which Hh intersects with each of these pathways, and combination therapies have resulted in improved antitumor efficacy and survival in animal models. Hh also plays an important role in hematopoiesis and in the maintenance of BCR-ABL–driven leukemic stem cells. Thus, combined inhibition of the Hh pathway and BCR-ABL has emerged as a promising potential therapeutic strategy in chronic myeloid leukemia (CML). A number of clinical trials evaluating combinations of Hh inhibitors with other targeted agents are now underway in CML and a variety of solid tumors. This review highlights these trials and summarizes preclinical evidence of crosstalk between Hh and four other actionable pathways—RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch—as well as the role of Hh in the maintenance of BCR-ABL–driven leukemic stem cells.
    Cancer Treatment Reviews 07/2014; 40(6). DOI:10.1016/j.ctrv.2014.02.003 · 6.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid cancer is one of the most rapidly increasing malignancies. The reasons for this increase is not completely known, but increases in the diagnosis of papillary thyroid microcarcinomas and follicular variant of papillary thyroid carcinomas along with the enhanced detection of well differentiated thyroid carcinomas are probably all contributing factors. Although most cases of well differentiated thyroid carcinomas are associated with an excellent prognosis, a small percentage of patients with well differentiated thyroid carcinomas as well as most patients with poorly differentiated and anaplastic thyroid carcinomas have recurrent and/or metastatic disease that is often fatal. The cancer stem cell model suggests that a small number of cells within a cancer, known as cancer stem-like cells, are responsible for resistance to chemotherapy and radiation therapy, as well as for recurrent and metastatic disease.. In this review we will focus on current studies about thyroid cancer stem-like cells, the processes of epithelial to mesenchymal transition, and mesenchymal to epithelial transition that provide plasticity to cancer stem-like cell growth in addition to the role of microRNAs in cancer stem cell development and regulation. Understanding the biology of cancer stem cells, epithelial to mesenchymal transition and the metastatic cascade should lead to the design of more rational targeted therapies for highly aggressive and fatal thyroid cancers.
    Endocrine Related Cancer 04/2014; 21(5). DOI:10.1530/ERC-14-0002 · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many cancers contain cell subpopulations that display characteristics of stem cells. These cells are characterised by their ability to self-renew, form differentiated progeny and develop resistance to chemotherapeutic strategies. Cancer stem cells may utilise many of the same signalling pathways as normal stem cells including Wnt, Notch and Hedgehog. The dietary agent curcumin exerts a plethora of anti-carcinogenic effects both in vitro and in vivo, and can also inhibit many of the signalling pathways associated with stem cell biology. Emerging evidence suggests that curcumin can exert its anti-carcinogenic activity via targeting cancer stem cells through the disruption of stem cell signalling pathways. In this review we summarise the ability of curcumin to interfere with signalling pathways Wnt, Hedgehog, Notch, Signal Transducers and Activator (STAT) and interleukin-8, and report curcumin-induced changes in function and properties of cancer stem cells. We present evidence that the effects of curcumin on cancer stem cells mediate, or contribute to, its anti-carcinogenic activity.
    Molecular Nutrition & Food Research 09/2013; 57(9). DOI:10.1002/mnfr.201300120 · 4.91 Impact Factor