Article

PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection.

Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14853, United States.
Biosensors & bioelectronics (Impact Factor: 5.43). 01/2009; 24(8):2428-33. DOI: 10.1016/j.bios.2008.12.025
Source: PubMed

ABSTRACT This paper discusses the design, microfabrication and use of an electrochemical biosensor based on a polymer substrate for cost effectiveness and disposability. As model analyte, amplified hsp70 mRNA from Cryptosporidium parvum was chosen. Microfluidic channels were fabricated in poly(methyl methacrylate) (PMMA) using hot embossing with a copper master. The electrochemical transducer, an interdigitated ultramicroelectrode array (IDUA) was also realized directly on the PMMA surface. First, the unstructured PMMA surface was UV functionalized. An 8 min UV treatment resulted in a carboxylic acid density of approximately 8 nmol/cm(2) on the PMMA surface. The surface carboxylic acid groups were then conjugated to cystamine using water-soluble carbodiimide chemistry. Gold (200 nm) was then evaporated onto the thiol-functionalized surface. Using standard photolithography techniques, the IDUA containing 10 microm wide electrodes with 5 microm gaps was then formed followed by a gold etch. The PMMA surface containing the microchannel was subsequently bonded to the PMMA surface containing the IDUA using UV-assisted thermal bonding. The additional UV treatment also served to decrease the water contact angle of the surface from 62.5 degrees +/-0.7 degrees to 48.4 degrees +/-0.2 degrees thus, aiding with the capillary flow in the device. The hsp70 mRNA was isolated from C. parvum oocysts and amplified using nucleic acid sequence-based amplification (NASBA). The amplicon was detected in a sandwich hybridization assay with capture probe-coated superparamagnetic beads and reporter probe-tagged liposomes. The liposomes entrapped potassium ferro/ferrihexacyanide to enable amperometric quantification of the amplicon on the IDUA. Amplified mRNA from only 1 oocyst was detectable with this PMMA biosensor. The final detection device measured approximately 10 mm x 40 mm x 3 mm and contained two detection channels for dual analyses.

0 Bookmarks
 · 
133 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several nucleic acid amplification techniques (NAATs), particularly PCR and real-time PCR, are currently used in the routine clinical laboratories. Such approaches have allowed rapid diagnosis with a high degree of sensitivity and specificity. However, conventional PCR methods have several intrinsic disadvantages such as the requirement for temperature cycling apparatus, and sophisticated and costly analytical equipments. Therefore, amplification at a constant temperature is an attractive alternative method to avoid these requirements. A new generation of isothermal amplification techniques are gaining a wide popularity as diagnostic tools due to their simple operation, rapid reaction and easy detection. The main isothermal methods reviewed here include loop-mediated isothermal amplification, nucleic acid sequence-based amplification, and helicase-dependent amplification. In this review, design criteria, potential of amplification, and application of these alternative molecular tests will be discussed and compared to conventional NAATs.
    Molecular Biotechnology 04/2012; · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A review of the recent advances in microfluidics based systems for the monitoring of waterborne pathogens is provided in this article. Emphasis has been made on existing, commercial and state-of-the-art systems and research activities in laboratories worldwide. The review separates sample processing systems and monitoring systems, highlighting the slow progress made in automated sample processing for monitoring of pathogens in waterworks and in the field. Future potential directions of research are also highlighted in the conclusions.
    Water Research 01/2014; 55:256–271. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel multi-channel poly(methyl methacrylate) (PMMA) microfluidic biosensor with interdigitated ultramicroelectrode arrays (IDUAs) for electrochemical detection was developed. The focus of the development was a simple fabrication procedure and the realization of a reliable large IDUA that can provide detection simultaneously to several microchannels. As proof of concept, five microchannels are positioned over a large single IDUA where the channels are parallel with the length of the electrode finger. The IDUAs were fabricated on the PMMA cover piece and bonded to a PMMA substrate containing the microfluidic channels using UV/ozone-assisted thermal bonding. Conditions of device fabrication were optimized realizing a rugged large IDUA within a bonded PMMA device. Gold adhesion to the PMMA, protective coatings, and pressure during bonding were optimized. Its electrochemical performance was studied using amperometric detection of potassium ferri and ferro hexacyanide. Cumulative signals within the same chip showed very good linearity over a range of 0-38 μM (R (2) = 0.98) and a limit of detection of 3.48 μM. The bonding of the device was optimized so that no cross talk between the channels was observed which otherwise would have resulted in unreliable electrochemical responses. The highly reproducible signals achieved were comparable to those obtained with separate single-channel devices. Subsequently, the multi-channel microfluidic chip was applied to a model bioanalytical detection strategy, i.e., the quantification of specific nucleic acid sequences using a sandwich approach. Here, probe-coated paramagnetic beads and probe-tagged liposomes entrapping ferri/ferro hexacyanide as the redox marker were used to bind to a single-stranded DNA sequence. Flow rates of the non-ionic detergent n-octyl-β-D-glucopyranoside for liposome lysis were optimized, and the detection of the target sequences was carried out coulometrically within 250 s and with a limit of detection of 12.5 μM. The robustness of the design and the reliability of the results obtained in comparison to previously published single-channel designs suggest that the multi-channel device offers an excellent opportunity for bioanalytical applications that require multianalyte detection and high-throughput assays.
    Analytical and Bioanalytical Chemistry 05/2013; · 3.66 Impact Factor

Full-text (2 Sources)

View
28 Downloads
Available from
May 22, 2014