Article

Test-retest reliability [corrected] of center of pressure measures of postural stability during quiet standing in a group with musculoskeletal disorders consisting of low back pain, anterior cruciate ligament injury and functional ankle instability.

Department of Physical Therapy, University of Social Welfare and Rehabilitation, Tehran, Iran.
Gait & posture (Impact Factor: 2.58). 02/2009; 29(3):460-4. DOI: 10.1016/j.gaitpost.2008.11.016
Source: PubMed

ABSTRACT Reliability is a population-specific property, but to the authors' knowledge there has been no study to determine the test-retest reliability of the postural stability measures such as center of pressure (COP) measures in the population of patients with musculoskeletal disorders (MSDs), while their clinical applications have been presented in literature. So, 33 patients with low back pain (LBP), anterior cruciate ligament (ACL) injury and functional ankle instability (FAI) randomly completed postural measurements with three levels of difficulty (rigid surface-eyes open, rigid surface-eyes closed, and foam surface-eyes closed) in two sessions. COP data were used to calculate standard deviation of amplitude, standard deviation of velocity, phase plane portrait, mean total velocity and area (95% confidence ellipse). Relative reliability of these measures was assessed using intraclass correlation coefficient (ICC) and absolute reliability using standard error of measurement (SEM) and coefficient of variation (CV). Also, minimal metrically detectable change (MMDC) was calculated to quantify intervention effects. Among different COP parameters, mean total velocity in all conditions of postural difficulty showed high to very high reliability, with ICC range of 0.74-0.91, SEM range of 0.09-0.40cm/s, CV range of 5.31-8.29% and MMDC range of 0.19-0.79cm/s. Phase plane portrait in anteroposterior-mediolateral (AP-ML) and ML direction were other best parameters with respect to the level of reliability. Mean total velocity and phase plane portrait parameters are suggested as good candidates to use for quantification and assessment of balance performance and identifying those with MSDs.

1 Bookmark
 · 
314 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stroke patients have impaired postural balance that increases the risk of falls and impairs their mobility. Assessment of postural balance is commonly carried out by recording centre of pressure (CoP) displacements, but the lack of data concerning reliability of these measures compromises their interpretation. The purpose of this study was to investigate the between-day reliability of six CoP-based variables, in order to provide i) reliability data for monitoring postural sway and weight-bearing asymmetry of stroke patients in clinical practice and ii) consistent assessment method of measurement error for applications in physical medicine and rehabilitation. Postural balance of 20 stroke patients was assessed in quiet standing on a force platform, in two sessions, 7 days apart. Six CoP-based variables were collected in eyes open and eyes closed conditions: postural sway was assessed with mean and standart deviation of CoP-velocity, CoP-velocity along the mediolateral and anteroposterior axes, and confidence ellipse area (CEAREA); weight-bearing asymmetry was assessed with mean CoP position along the mediolateral axis (CoPML). The intraclass correlation coefficient (ICC) was used to determine the level of agreement between test-retest. Small real difference (SRD), corresponding to the smallest change that indicates a real improvement for a single individual, was used to determine the extent of measurement error. ICCs were satisfactory (>0.9) for all CoP-based variables, except for CEAREA in eyes open condition and CoPML (<0.8). The SRDs (eyes open/closed conditions) were: 6.1/9.5 mm.s-1 for mean velocity; 12.3/12.2 mm.s-1 for standard deviation of CoP-velocity; 3.6/5.5 mm.s-1 and 4.9/7.3 mm.s-1 for CoP-velocity in mediolateral and anteroposterior axes, respectively; 17.4/21.4 mm for CoPML. Because CEAREA showed heteroscedasticity of measurement error distribution, SRD (eyes open/closed conditions) was expressed as a percentage (121/75%) and a ratio (3.68/2.16) obtained after log-antilog procedure. In clinical practice, the CoP-based velocity variables should be prefer to CEAREA to assess and monitor postural sway over time in hemiplegic stroke patients. The poor reliability of CoPML compromises its use to assess weight-bearing asymmetry. The procedure we used could be applied in reliability studies concerning other CoP-based variables or other biological variables in the field of physical medicine and rehabilitation.
    Journal of NeuroEngineering and Rehabilitation 03/2014; 11(1):39. · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A patellar bandage is often used by individuals with patellofemoral pain syndrome (PPS) to reduce pain and the additional sensorial input improves proprioception of the knee joint. The aim of this work was to assess the effect of a patellar bandage on the postural control of individuals with and without PPS. [Subjects and Methods] An analysis was performed of variables of center of pressure (CoP) as recorded by a force plate. Information about the forces and moments in three directions was used to obtain the CoP. Thirty women participated in this study: 15 with PPS and 15 without PPS. All subjects performed 3 trials in a unipodal stance with and without a patellar bandage. The force plate data were used to calculate the following variables: CoP sway area, CoP displacement frequency, and CoP mean velocity for the anteroposterior (AP) and mediolateral (ML) directions. A the linear mixed effects model was used for statistical analysis. [Results] Postural sway was significantly reduced in individuals with PPS when a patellar bandage was applied. [Conclusion] Additional sensory input from a patellar bandage increase proprioceptive feedback and this could be related to the improvement in postural control of PPS subjects.
    Journal of Physical Therapy Science 03/2014; 26(3):461-4. · 0.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal cord injury (SCI) can damage long tracts, affecting postural stability. Impairments in balance have recently been proposed to be highly predictive of functional recovery in patients with SCI and thus merit evaluation. In addition to common observational clinical scales, more objective evaluation methods of balance can be implemented by analyzing center of pressure (COP) parameters using stabilometric platforms (SPs). COP analysis has been used in various pathologies, but the COP parameters with regard to measurement vary, depending on the features of the target population, and have only been assessed in healthy subjects. Specifically, concerning subjects with SCI, few studies have reported COP parameters, and none has addressed the reliability, validity, or responsiveness of this measure. The objective of this serial cross-sectional study was to analyze the reliability, validity, and responsiveness of COP parameters under various conditions in incomplete SCI subjects to assess balance.
    Journal of NeuroEngineering and Rehabilitation 05/2014; 11(1):86. · 2.57 Impact Factor

Full-text (2 Sources)

View
603 Downloads
Available from
May 21, 2014