Article

Molecular mechanisms of proteasome assembly.

Laboratory of Protein Metabolism, Department of Integrated Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Nature Reviews Molecular Cell Biology (Impact Factor: 36.46). 03/2009; 10(2):104-15. DOI: 10.1038/nrm2630
Source: PubMed

ABSTRACT The 26S proteasome is a highly conserved protein degradation machine that consists of the 20S proteasome and 19S regulatory particles, which include 14 and 19 different polypeptides, respectively. How the proteasome components are assembled is a fundamental question towards understanding the process of protein degradation and its functions in diverse biological processes. Several proteasome-dedicated chaperones are involved in the efficient and correct assembly of the 20S proteasome. These chaperones help the initiation and progression of the assembly process by transiently associating with proteasome precursors. By contrast, little is known about the assembly of the 19S regulatory particles, but several hints have emerged.

3 Followers
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expression of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies.
    Biochemical and Biophysical Research Communications 02/2015; DOI:10.1016/j.bbrc.2015.01.110 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid subcomplexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base subcomplexes, and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Rpn11 in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11-m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of the 5 module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Reintroducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11-Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine, and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.
    Bioscience Reports 01/2015; DOI:10.1042/BSR20140173 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current treatment strategies for rheumatoid arthritis (RA) consisting of disease-modifying anti-rheumatic drugs or biological agents are not always effective, hence driving the demand for new experimental therapeutics. The antiproliferative capacity of proteasome inhibitors (PIs) has received considerable attention given the success of their first prototypical representative, bortezomib (BTZ), in the treatment of B cell and plasma cell-related hematological malignancies. Therapeutic application of PIs in an autoimmune disease setting is much less explored, despite a clear rationale of (immuno) proteasome involvement in (auto)antigen presentation, and PIs harboring the capacity to inhibit the activation of nuclear factor-κB and suppress the release of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-6. Here, we review the clinical positioning of (immuno) proteasomes in autoimmune diseases, in particular RA, systemic lupus erythematosus, Sjögren's syndrome and sclerodema, and elaborate on (pre)clinical data related to the impact of BTZ and next generation PIs on immune effector cells (T cells, B cells, dendritic cells, macrophages, osteoclasts) implicated in their pathophysiology. Finally, factors influencing long-term efficacy of PIs, their current (pre)clinical status and future perspectives as anti-inflammatory and anti-arthritic agents are discussed.