Article

Complexin controls the force transfer from SNARE complexes to membranes in fusion.

Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Science (Impact Factor: 31.48). 02/2009; 323(5913):516-21. DOI: 10.1126/science.1166505
Source: PubMed

ABSTRACT Trans-SNAP receptor (SNARE, where SNAP is defined as soluble NSF attachment protein, and NSF is defined as N-ethylmaleimide-sensitive factor) complexes catalyze synaptic vesicle fusion and bind complexin, but the function of complexin binding to SNARE complexes remains unclear. Here we show that in neuronal synapses, complexin simultaneously suppressed spontaneous fusion and activated fast calcium ion-evoked fusion. The dual function of complexin required SNARE binding and also involved distinct amino-terminal sequences of complexin that localize to the point where trans-SNARE complexes insert into the fusing membranes, suggesting that complexin controls the force that trans-SNARE complexes apply onto the fusing membranes. Consistent with this hypothesis, a mutation in the membrane insertion sequence of the v-SNARE synaptobrevin/vesicle-associated membrane protein (VAMP) phenocopied the complexin loss-of-function state without impairing complexin binding to SNARE complexes. Thus, complexin probably activates and clamps the force transfer from assembled trans-SNARE complexes onto fusing membranes.

0 Bookmarks
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles’ ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
    Traffic 01/2015; DOI:10.1111/tra.12262 · 4.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SNARE complex plays a vital role in vesicle fusion arising during neuronal exocytosis. Key components in the regulation of SNARE complex formation, and ultimately fusion, are the transmembrane and linker regions of the vesicle-associated protein, synaptobrevin. However, the membrane-embedded structure of synaptobrevin in its prefusion state, which determines its interaction with other SNARE proteins during fusion, is largely unknown. This study reports all-atom molecular-dynamics simulations of the prefusion configuration of synaptobrevin in a lipid bilayer, aimed at characterizing the insertion depth and the orientation of the protein in the membrane, as well as the nature of the amino acids involved in determining these properties. By characterizing the structural properties of both wild-type and mutant synaptobrevin, the effects of C-terminal additions on tilt and insertion depth of membrane-embedded synaptobrevin are determined. The simulations suggest a robust, highly tilted state for membrane-embedded synaptobrevin with a helical connection between the transmembrane and linker regions, leading to an apparently new characterization of structural elements in prefusion synaptobrevin and providing a framework for interpreting past mutation experiments.
    Biophysical Journal 11/2014; 107(9):2112-21. DOI:10.1016/j.bpj.2014.09.013 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sorting endosomes carry α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) from their maturation sites to their final destination at the dendritic plasma membrane through both constitutive and regulated exocytosis. Insertion of functional AMPARs into the postsynaptic membrane is essential for maintaining fast excitatory synaptic transmission and plasticity. Despite this crucial role in neuronal function, the machinery mediating the fusion of AMPAR-containing endosomes in dendrites has been largely understudied in comparison to presynaptic vesicle exocytosis. Increasing evidence suggests that similarly to neurotransmitter release, AMPARs insertion relies on the formation of a SNARE complex (soluble NSF-attachment protein receptor), whose composition in dendrites has just begun to be elucidated. This review analyzes recent findings of the fusion machinery involved in regulated AMPARs insertion and discusses how dendritic exocytosis and AMPARs lateral diffusion may work together to support synaptic plasticity.
    Frontiers in Cellular Neuroscience 12/2014; 8:407. DOI:10.3389/fncel.2014.00407 · 4.18 Impact Factor

Preview

Download
1 Download
Available from