Article

GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism.

Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2009; 106(4):1285-90. DOI: 10.1073/pnas.0806720106
Source: PubMed

ABSTRACT Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic peptide secreted from the gastrointestinal tract in response to food intake. It enhances pancreatic islet beta-cell proliferation and glucose-dependent insulin secretion, and lowers blood glucose and food intake in patients with type 2 diabetes mellitus (T2DM). A long-acting GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex-4), is the first of this new class of antihyperglycemia drugs approved to treat T2DM. GLP-1Rs are coupled to the cAMP second messenger pathway and, along with pancreatic cells, are expressed within the nervous system of rodents and humans, where receptor activation elicits neurotrophic actions. We detected GLP-1R mRNA expression in both cultured embryonic primary cerebral cortical and ventral mesencephalic (dopaminergic) neurons. These cells are vulnerable to hypoxia- and 6-hydroxydopamine-induced cell death, respectively. We found that GLP-1 and Ex-4 conferred protection in these cells, but not in cells from Glp1r knockout (-/-) mice. Administration of Ex-4 reduced brain damage and improved functional outcome in a transient middle cerebral artery occlusion stroke model. Ex-4 treatment also protected dopaminergic neurons against degeneration, preserved dopamine levels, and improved motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). Our findings demonstrate that Ex-4 can protect neurons against metabolic and oxidative insults, and they provide preclinical support for the therapeutic potential for Ex-4 in the treatment of stroke and PD.

0 Bookmarks
 · 
272 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, GLP-1 and its analogs have been developed for the treatment of type 2 diabetes. It has been reported that stimulating the GLP-1 receptor can protect neurons against metabolic and oxidative insults, and therefore can be used in the treatment of stroke and Parkinson's disease. The present study aimed to examine the neuroprotective effects of rhGLP-1 (7-36) and its possible mechanisms against acute ischemia/reperfusion injuries induced by middle cerebral artery occlusion (MCAO) in diabetic rats. The type 2 diabetic rat model was established by a combination of a high-fat diet and low-dose streptozotocin (STZ). RhGLP-1 (7-36) (20, 40, 80μg/kg) was given intraperitioneally before reperfusion. The neuroprotective effects of rhGLP-1 (7-36) were evaluated by changes in neurological deficit scores and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Changes in blood glucose were used to assess hypoglycemic effects. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), inducible nitric oxide syntheses (iNOS) and endothelial nitric oxide syntheses (eNOS) after MCAO/R administration (2h and 46h) were examined to investigate the possible mechanisms of RhGLP-1 (7-36). Haematoxylin and eosin (H&E) staining was used for histopathological observation. Compared with the control group, rhGLP-1 (7-36)-treated groups decreased nerve function deficiency scores; significantly reduced infarction volume percentage, MDA, iNOS and blood glucose; and significantly increased SOD, GSH-PX and eNOS. In addition, rhGLP-1 (7-36) groups enhanced the density of surviving neurons and increased vascular proliferation. The current study suggests a neuroprotective effect of rhGLP-1 (7-36) in diabetic MCAO/R rats since anti-oxidative and anti-nitrosative stress effects can contribute to beneficial effects against ischemia/reperfusion injury. Copyright © 2015. Published by Elsevier B.V.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the initial observation that a calorie-restricted (CR) diet can extend rodent lifespan, many genetic and pharmaceutical interventions that also extend lifespan in mammals have been discovered. The mechanism by which CR and these other interventions extend lifespan is the subject of significant debate and research. One proposed mechanism is that CR promotes longevity by increasing insulin sensitivity, but recent findings that dissociate longevity and insulin sensitivity cast doubt on this hypothesis. These findings can be reconciled if longevity is promoted not via increased insulin sensitivity, but instead via decreased PI3K/Akt/mTOR pathway signaling. This review presents a unifying hypothesis that explains the lifespan-extending effects of a variety of genetic mutations and pharmaceutical interventions and points towards new molecular pathways which may also be leveraged to promote healthy aging.
    SpringerPlus 01/2014; 3:735. DOI:10.1186/2193-1801-3-735
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the human brain is exceptional in size and information processing capabilities, it is similar to other mammals with regard to the factors that promote its optimal performance. Three such factors are the challenges of physical exercise, food deprivation/fasting, and social/intellectual engagement. Because it evolved, in part, for success in seeking and acquiring food, the brain functions best when the individual is hungry and physically active, as typified by the hungry lion stalking and chasing its prey. Indeed, studies of animal models and human subjects demonstrate robust beneficial effects of regular exercise and intermittent energy restriction/fasting on cognitive function and mood, particularly in the contexts of aging and associated neurodegenerative disorders. Unfortunately, the agricultural revolution and the invention of effort-sparing technologies have resulted in a dramatic reduction or elimination of vigorous exercise and fasting, leaving only intellectual challenges to bolster brain function. In addition to disengaging beneficial adaptive responses in the brain, sedentary overindulgent lifestyles promote obesity, diabetes and cardiovascular disease, all of which may increase the risk of cognitive impairment and Alzheimer's disease. It is therefore important to embrace the reality of the requirements for exercise, intermittent fasting and critical thinking for optimal brain health throughout life, and to recognize the dire consequences for our aging population of failing to implement such brain-healthy lifestyles.
    Ageing Research Reviews 01/2015; DOI:10.1016/j.arr.2014.12.011 · 7.63 Impact Factor

Full-text (2 Sources)

Download
41 Downloads
Available from
May 28, 2014