Infectious bursal disease virus is an icosahedral polyploid dsRNA virus

Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 02/2009; 106(7):2148-52. DOI: 10.1073/pnas.0808498106
Source: PubMed

ABSTRACT Viruses are a paradigm of the economy of genome resources, reflected in their multiplication strategy and for their own structure. Although there is enormous structural diversity, the viral genome is always enclosed within a proteinaceous coat, and most virus species are haploid; the only exception to this rule are the highly pleomorphic enveloped viruses. We performed an in-depth characterization of infectious bursal disease virus (IBDV), a non-enveloped icosahedral dsRNA virus with a bisegmented genome. Up to 6 natural populations can be purified, which share a similar protein composition but show higher sedimentation coefficients as particle density increases. Stoichiometry analysis of their genome indicated that these biophysical differences correlate with the copy number of dsRNA segments inside the viral capsid. This is a demonstration of a functional polyploid icosahedral dsRNA virus. We show that IBDV particles with greater genome copy number have higher infectivity rates. Our results show an unprecedented replicative strategy for dsRNA viruses and suggest that birnaviruses are living viral entities encompassing numerous functional and structural characteristics of positive and negative ssRNA viruses.

Download full-text


Available from: Daniel Luque, Jan 08, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infectious bursal disease (IBD) is a highly contagious disease of chickens which leads to immunosuppression. In our previous study it was demonstrated that, possibly, CD4+ and CD8+ T cells may employ perforin and granzyme-A pathway for the clearance of IBDV-infected bursal cells. In this study, we evaluated the cytotoxic T cell responses involving two independently functioning but complementary mechanisms: Fas–Fas ligand and perforin–granzyme pathways in IBDV-infected chickens. As demonstrated previously, infection of chickens with IBDV was accompanied by influx of CD8+ T cells in the bursa and spleen. There was an upregulation in the gene expression of cytolytic molecules: Fas and Fas ligand (FasL), perforin (PFN) and granzyme-A (Gzm-A) in bursal and in the splenic tissues of IBDV inoculated chickens. Additionally, for the first time, we detected Fas, Fas ligand, Caspase-3 and PFN producing CD8+ T cells in the bursa and spleen of IBDV-infected chickens. The infiltration and activation of CD8+ T cells was substantiated by the detection of Th1 cytokine, IFN-γ. These data suggest that T cells may be involved in the clearance of virus from the target organ bursa and peripheral tissues such as spleen. The findings of these studies provide new insights into the pathogenesis of IBD and provide mechanistic evidence that the cytotoxic T cells may act through both Fas–FasL and perforin–granzyme pathways in mediating the clearance of virus-infected cells.
    01/2012; 2:112–119. DOI:10.1016/j.rinim.2012.05.003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The negative-sense RNA genome of influenza A virus is composed of eight segments, which encode 12 proteins between them. At the final stage of viral assembly, these genomic virion (v)RNAs are incorporated into the virion as it buds from the apical plasma membrane of the cell. Genome segmentation confers evolutionary advantages on the virus, but also poses a problem during virion assembly as at least one copy of each of the eight segments is required to produce a fully infectious virus particle. Historically, arguments have been presented in favour of a specific packaging mechanism that ensures incorporation of a full genome complement, as well as for an alternative model in which segments are chosen at random but packaged in sufficient numbers to ensure that a reasonable proportion of virions are viable. The question has seen a resurgence of interest in recent years leading to a consensus that the vast majority of virions contain no more than eight segments and that a specific mechanism does indeed function to select one copy of each vRNA. This review summarizes work leading to this conclusion. In addition, we describe recent progress in identifying the specific packaging signals and discuss likely mechanisms by which these RNA elements might operate.
    Journal of General Virology 12/2009; 91(Pt 2):313-28. DOI:10.1099/vir.0.017608-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the current study, we investigate changes in CD4+CD25+ cells in chickens during infectious bursal disease virus (IBDV) infection. The percentage of CD4+CD25+ cells in lymph organs, e.g., the thymus, spleen, bursa of Fabricius and peripheral blood, during the first 1-5 days post infection (dpi) was assessed by flow cytometry. The data revealed a remarkable decrease in the percentage of CD4+CD25+ cells in the thymus from 1 to 5 dpi and in the spleen during early infection. An increase of the percentage of CD4+CD25+ cells among peripheral blood lymphocytes was observed during the first two days of IBDV infection. Additionally, CD4+CD25+ cells infiltrated the bursa along with CD4+ cells after IBDV infection. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the mRNA levels of immune-related cytokines in IBDV-infected thymus and bursa of Fabricius tissues. The data revealed that IBDV caused a significant increase in interleukin (IL)-10 mRNA levels, with the Harbin-1 strain (vvIBDV) inducing higher IL-10 expression than the Ts strain. Taken together, our data suggest that chicken CD4+CD25+ cells may participate in IBDV pathogenicity by migrating from their sites of origin and storage, the thymus and spleen, to the virally targeted bursa of Fabricius during IBDV infection.
    Viruses 01/2015; 7(3):1357-72. DOI:10.3390/v7031357