ATP induces P2X7 receptor-independent cytokine and chemokine expression through P2X1 and P2X3 receptors in murine mast cells.

Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany.
Journal of leukocyte biology (Impact Factor: 4.99). 02/2009; 85(4):692-702. DOI: 10.1189/jlb.0808470
Source: PubMed

ABSTRACT Extracellular ATP mediates a diverse array of biological responses in many cell types and tissues, including immune cells. We have demonstrated that ATP induces purinergic receptor P2X(7) mediated membrane permeabilization, apoptosis, and cytokine expression in murine mast cells (MCs). Here, we report that MCs deficient in the expression of the P2X(7) receptor are resistant to the ATP-induced membrane permeabilization and apoptosis. However, ATP affects the tyrosine phosphorylation pattern of P2X(7)knockout cells, leading to the activation of ERK1/2. Furthermore, ATP induces expression of several cytokines and chemokines in these cells, including IL-4, IL-6, IFN-gamma, TNF-alpha, RANTES, and MIP-2, at the mRNA level. In addition, the release of IL-6 and IL-13 to cell-conditioned medium was confirmed by ELISA. The ligand selectivity and pharmacological profile indicate the involvement of two P2X family receptors, P2X(1) and P2X(3). Thus, depending on genetic background, particular tissue microenvironment, and ATP concentration, MCs can presumably engage different P2X receptor subtypes, which may result in functionally distinct biological responses to extracellular nucleotides. This finding highlights a novel level of complexity in the sophisticated biology of MCs and may facilitate the development of new therapeutic approaches to modulate MC activities.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
    Purinergic Signalling 10/2014; DOI:10.1007/s11302-014-9427-2 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P2 nucleotide receptors were proposed to consist of two subfamilies based on pharmacology in 1985, named P2X and P2Y receptors. Later, this was confirmed following cloning of the receptors for nucleotides and studies of transduction mechanisms in the early 1990s. P2X receptors are ion channels and seven subtypes are recognized that form trimeric homomultimers or heteromultimers. P2X receptors are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed on many types of non-neuronal cells to mediate smooth muscle contraction, secretion, and immune modulation. The emphasis in this review will be on the pathophysiology of P2X receptors and therapeutic potential of P2X receptor agonists and antagonists for neurodegenerative and inflammatory disorders, visceral and neuropathic pain, irritable bowel syndrome, diabetes, kidney failure, bladder incontinence and cancer, as well as disorders if the special senses, airways, skin, cardiovascular, and musculoskeletal systems.
    Frontiers in Cellular Neuroscience 11/2013; 7:227. DOI:10.3389/fncel.2013.00227 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-6 (IL-6) is an important myokine, highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP, as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and pSTAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10 fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody, or pre-incubation with the STAT3 inhibitor VIII, reduced in 70% STAT3 activation evoked by extracellular ATP. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.
    AJP Endocrinology and Metabolism 02/2014; 306(8). DOI:10.1152/ajpendo.00450.2013 · 4.09 Impact Factor


Available from