[(11)C]PIB-amyloid binding and levels of Abeta40 and Abeta42 in postmortem brain tissue from Alzheimer patients.

Uppsala University, Department of Biochemistry and Organic Chemistry, Sweden.
Neurochemistry International (Impact Factor: 2.65). 12/2008; 54(5-6):347-57. DOI: 10.1016/j.neuint.2008.12.016
Source: PubMed

ABSTRACT beta-Amyloid (Abeta) deposits are one of the major histopathological hallmarks of Alzheimer's disease (AD). The amyloid-imaging positron emission tomography (PET) tracer [(11)C]PIB (N-methyl[(11)C]2-(4'-methylaminophenyl)-6-hydroxy-benzothiazole) is used in the assessment of Abeta deposits in the human brain. [(11)C]PIB-amyloid interaction and insoluble Abeta40 and Abeta42 peptide levels in the brain were quantified in postmortem tissue from nine AD patients and nine age-matched control subjects in the temporal, frontal and parietal cortices and the cerebellum. Autoradiographical studies showed significantly higher densities of specific [(11)C]PIB-amyloid binding in gray matter in the temporal and parietal cortex (62fmol/mg tissue) in AD patients as compared to control subjects, whereas the density was somewhat lower in the frontal cortex (56fmol/mg tissue). No specific binding could be detected in the AD cerebellum or in the tissues from the control subjects (< or =5fmol/mg tissue). Insoluble Abeta40 and total Abeta levels (i.e. sum of Abeta40 and Abeta42) were significantly higher in patients than in controls in all measured cortical regions as determined using ELISA, which was confirmed using immunohistochemistry. The present findings show a more regional selective distribution of [(11)C]PIB amyloid binding than previously reported. Moreover, it is suggested that some of the [(11)C]PIB binding and insoluble Abeta seen in control subjects may be amyloid in the blood vessels.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ortho-substituted and para-substituted aminophenyl benzothiazoles were synthesised and characterised using NMR spectroscopy. A comparison of the proton chemical shift values reveals significant differences in the observed chemical shift values for the NH protons indicating the presence of a hydrogen bond in all ortho-substituted compounds as compared to the para compounds. The presence of intramolecular hydrogen bond in the ortho amino substituted aminophenyl benzothiazole forces the molecule to be planar which may be an additional advantage in developing these compounds as Alzheimer's imaging agent because the binding to amyloid fibrils prefers planar compounds. The splitting pattern of the methylene proton next to the amino group also showed significant coupling to the amino proton consistent with the notion of the existence of slow exchange and hydrogen bond in the ortho-substituted compounds. This is further verified by density functional theory calculations which yielded a near planar low energy conformer for all the o-aminophenyl benzothiazoles and displayed a hydrogen bond from the amine proton to the nitrogen of the thiazole ring. A detailed analysis of the 1H, 13C and 15N NMR chemical shifts and density functional theory calculated structures of the compounds are described. Copyright © 2014 John Wiley & Sons, Ltd.
    Magnetic Resonance in Chemistry 08/2014; 52(8). DOI:10.1002/mrc.4088 · 1.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several aminophenyl benzothiazoles were prepared with a view to using them as amyloid binding agents for imaging β-amyloid in Alzheimer's disease. These precursors were radiolabeled with (11) C-positron-emitting radioisotope using an automated synthesizer and selected radiolabeled compounds were further purified by HPLC. Our results demonstrate that changes in structure have a major influence on the radioactive yield and the ease with which the radiolabel can be introduced. Aminophenyl benzothiazoles with an attached isopropyl group resisted dialkylation perhaps due to steric hindrance caused by this group. Straight chain attachment of methyl, ethyl, butyl, and crotyl groups in the structure decreased the radiochemical yield. Notably, the o-aminophenyl benzothiazole derivatives were difficult to alkylate despite stringent experimental conditions. This reactivity difference is attributed to the hydrogen bonding characteristics of the o-amino group with the nitrogen atom of the thiazole ring.
    Journal of Labelled Compounds and Radiopharmaceuticals 07/2014; 57(9). DOI:10.1002/jlcr.3216 · 1.19 Impact Factor