Surface-modified hydroxyapatite linked byL-lactic acid oligomer in the absence of catalyst

State Key Laboratory of Polymer Physics and Chemistry, Chinese Academy of Sciences, Peping, Beijing, China
Journal of Polymer Science Part A Polymer Chemistry (Impact Factor: 3.54). 11/2005; 43(21):5177-5185. DOI: 10.1002/pola.21006

ABSTRACT A new surface modification method of hydroxyapatite nanoparticles (n-HA) by surface grafting reaction of L-lactic acid oligomer with carboxyl terminal (LAc oligomer) in the absence of any catalyst was developed. The LAc oligomer with a certain molecular weight was directly synthesized by condensation of L-lactic acid. Surface-modified HA nanoparticles (p-HA) were attested by Fourier transformation infrared spectroscopy, 31P MAS-NMR, and thermal gravimetric analysis (TGA). The results showed that LAc oligomer could be grafted onto the n-HA surface by forming a Ca carboxylate bond. The grafting amount of LAc oligomer was about 13.3 wt %. The p-HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p-HA/PLLA composite containing 15 wt % of p-HA were 68.7 MPa and 2.1 GPa, respectively, while those of the n-HA/PLLA composites were 43 MPa and 1.6 GPa, respectively. The p-HA/PLLA composites had better thermal stability than n-HA/PLLA composites and neat PLLA had, as determined by isothermal TGA. The hydrolytic degradation behavior of the composites in phosphate buffered saline (PBS, pH 7.4) was investigated. The p-HA/PLLA composites lost their mechanical properties more slowly than did n-HA/PLLA composites in PBS because of their reinforced adhesion between the HA filler and PLLA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5177–5185, 2005

  • [Show abstract] [Hide abstract]
    ABSTRACT: Porous scaffolds consisting of bioactive inorganic nanoparticles and biodegradable polymers have gained much interest in bone tissue engineering. We report here a facile approach to fabricating poly(l-lactic acid)-grafted hydroxyapatite (g-HAp)/poly(lactide-co-glycolide) (PLGA) nanocomposite (NC) porous scaffolds by solvent evaporation of Pickering high internal phase emulsion (HIPE) templates, where g-HAp nanoparticles act as particulate stabilizers. The resultant porous scaffolds exhibit an open and rough pore structure. The pore structure and mechanical properties of the scaffolds can be tuned readily by varying the g-HAp nanoparticle concentration and internal phase volume fraction of the emulsion templates. With increasing the g-HAp concentration or decreasing the internal phase volume fraction, the pore size and the porosity decrease, while the Young's modulus and the compressive stress enhance. Moreover, the in vitro mineralization tests show that the bioactivity of the scaffolds increases with increasing the g-HAp concentration. Furthermore, the anti-inflammatory drug ibuprofen (IBU) is loaded into the scaffolds, and the drug release studies indicate that the loaded-IBU exhibits a sustained release profile. Finally, in vitro cell culture assays prove that the scaffolds are biocompatible because of supporting adhesion, spreading, and proliferation of mouse bone mesenchymal stem cells. All the results indicate that the solvent evaporation based on Pickering HIPE templates is a promising alternative method to fabricate NC porous scaffolds for potential bone tissue engineering applications.
    ACS Applied Materials & Interfaces 09/2014; 6(19). DOI:10.1021/am504877h · 5.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydroxyapatite (HAp)/poly(L-lactic acid) (PLLA) interconnected macroporous materials are facilely and effectively fabricated by templating water-in-dichloromethane with PLLA (W/O) Pickering emulsions. The HAp nanoparticles modified with PLLA (g-HAp nanoparticles) are used as effective particulate emulsifiers to produce stable W/O Pickering emulsions. Evaporation of the W/O Pickering emulsions directly leads to interconnected porous nanocomposite materials in absence of any chemical reactions. This simple and effective method can be used to prepare a variety of functionalized porous materials, which are suitable for biomedical applications.
    Macromolecular Materials and Engineering 03/2014; 299(9). DOI:10.1002/mame.201300449 · 2.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In composites of hydroxyapatite (HA) nanoparticles with a polymer matrix, the aggregation of nanoparticles would induce structural defects. In order to improve the dispersibility of HA nanoparticles in poly(ethylene glycol) dimethacrylate (PEGDMA) matrix and enhance mechanical properties of the HA/PEGDMA composite as potential bone substitute material, surface‐grafted HA nanoparticles with poly(ethylene glycol) monomethacrylate (PEGMA) were prepared, and crosslinked with PEGDMA under UV light to form a composite. The structure of HA‐g‐PEGMA was characterized by X‐ray diffraction (XRD) and thermal gravimetric analysis (TGA). The dispersibility of HA‐g‐PEGMA nanoparticles in poly(PEGDMA) was evaluated by SEM. The mechanical properties of the composites were investigated by compressive test. The dispersibility of HA‐g‐PEGMA nanoparticles in poly(PEGDMA) matrix was better than the bare HA. At a 1 wt % content of loading, the strength of composites increased by 14%, and the modulus increased by 9%. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
    Journal of Applied Polymer Science 02/2013; 127(3). DOI:10.1002/app.37732 · 1.64 Impact Factor