Total Least-Squares Adjustment of Condition Equations

Studia Geophysica et Geodaetica (Impact Factor: 0.98). 01/2011; 55(3). DOI: 10.1007/s11200-011-0032-3

ABSTRACT The usual least-squares adjustment within an Errors-in-Variables (EIV) model is often described as Total Least-Squares Solution (TLSS), just as the usual least-squares adjustment within a Random Effects Model (REM) has become popular under the name of Least-Squares Collocation (without trend). In comparison to the standard Gauss-Markov Model (GMM), the EIV-Model is less informative whereas the REM is more informative. It is known under which conditions exactly the GMM or the REM can be equivalently replaced by a model of Condition Equations or, more generally, by a Gauss-Helmert-Model (GHM). Such equivalency conditions are, however, still unknown for the EIV-Model once it is transformed into such a model of Condition Equations. In a first step, it is shown in this contribution how the respective residual vector and residual matrix would look like if the Total Least-Squares Solution is applied to condition equations with a random coefficient matrix to describe the transformation of the random error vector. The results are demonstrated using numeric examples which show that this approach may be valuable in its own right.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A standard errors-in-variables (EIV) model refers to a Gauss–Markov model with an uncertain model matrix from a geodetic perspective. Least squares within the EIV model is usually called the total least squares (TLS) technique because of its symmetrical adjustment. However, the solutions and computational advantages of the weighted TLS problem with a general weight matrix (WTLS) are mostly unknown. In this study, the WTLS problem was solved using three different approaches: iterative methods based on the normal equation, the iteratively linearized Gauss–Helmert model with algebraic Jacobian matrices, and numerical analysis. Furthermore, sufficient conditions for WTLS optimization were investigated systematically as proposed solutions yield only necessary conditions for optimality. A WTLS solution was considered to treat random parameters within the EIV model. Last, applications to test these novel algorithms are presented.
    Journal of Geodesy 08/2013; 87(8). · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new proof is presented of the desirable property of the weighted total least-squares (WTLS) approach in preserving the structure of the coefficient matrix in terms of the functional independent elements. The WTLS considers the full covariance matrix of observed quantities in the observation vector and in the coefficient matrix; possible correlation between entries in the observation vector and the coefficient matrix are also considered. The WTLS approach is then equipped with constraints in order to produce the constrained structured TLS (CSTLS) solution. The proposed approach considers the correlation between the observation vector and the coefficient matrix of an Error-In-Variables model, which is not considered in other, recently proposed approaches. A rigid transformation problem is done by preservation of the structure and satisfying the constraints simultaneously.
    Studia Geophysica et Geodaetica 01/2014; · 0.98 Impact Factor