Biopanning of phage displayed peptide libraries for the isolation of cell-specific ligands.

Division of Translational Research, Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2009; 504:291-321. DOI: 10.1007/978-1-60327-569-9_18
Source: PubMed

ABSTRACT One limitation in the development of biosensors for the early detection of disease is the availability of high specificity and affinity ligands for biomarkers that are indicative of a pathogenic process. Within the past 10 years, biopanning of phage displayed peptide libraries on intact cells has proven to be a successful route to the identification of cell-specific ligands. The peptides selected from these combinatorial libraries are often able to distinguish between diseased cells and their normal counterparts as well as cells in different activation states. These ligands are small and chemical methodologies are available for regiospecific derivatization. As such, they can be incorporated into a variety of different diagnostic and therapeutic platforms. Here we describe the methods utilized in the selection of peptides from phage displayed libraries by biopanning. In addition, we provide methods for the synthesis of the selected peptides as both monomers and tetramers. Downstream uses for the peptides are illustrated.

Download full-text


Available from: Michael Joseph Mcguire, Aug 24, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targeted cancer therapies focus on molecular and cellular changes that are specific to cancer and hold the promise of harming fewer normal cells, reducing side effects, and improving the quality of life. One major challenge in cancer nanotechnology is how to selectively deliver nanoparticles to diseased tissues while simultaneously minimizing the accumulation onto the nanoparticle of unwanted materials (e.g., proteins in the blood) during the delivery process. Once therapeutic nanoparticles have been created, very often they are linked or coated to other molecules that assist in targeting the delivery of nanoparticles to different cell types of the body. These linkers or coatings have been termed targeting ligands or “smart molecules” because of their inherent ability to direct selective binding to cell types or states and, therefore, confer “smartness” to nanoparticles. Likewise, “smartness” can be imparted to the nanoparticles to selectively repel unwanted entities in the body. To date, such smart molecules can consist of peptides, antibodies, engineered proteins, nucleic acid aptamers, or small organic molecules. This review describes how such smart molecules are discovered, enhanced, and anchored to nanoparticles, with an emphasis on how to minimize nonspecific interactions of nanoparticles to unintended targets.
    06/2009; 34(06). DOI:10.1557/mrs2009.119
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mistletoe lectins (MLs) are the active components of aqueous mistletoe extracts widely used in complementary cancer therapy, however, it is not clear if they bind to carbohydrate residues only or whether they interact with proteins as well. Protein-protein interactions do not seem unlikely as MLs act at very low molar concentrations usually observed with peptide-peptide interactions only and not seen with lectin-sugar interactions. In order to detect protein-protein interactions a random peptide library was screened for the ability to bind to MLs. MLs bound to peptides showing homologies to multidrug resistance-associated protein 5 (MRP5). However, the MLs only slightly modified the MRP5 efflux pump, while periodate treatment to inhibit cell membrane binding via glycan completely abolished the ML-I binding sites in MRP5 overexpressing cells. The protein sequence is not important for ML-I binding, indicating that the biological activity of MLs can most likely be attributed to the sugar chains.
    Anticancer research 12/2009; 29(12):4941-8. · 1.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oral mucosal immunization can induce protective immunity in both systemic compartments and the mucosa. Successful mucosal immunization depends on Ag delivery to the mucosal immune induction site. The high transcytotic activity of M cells within the mucosa makes these cells attractive targets for mucosal Ag delivery, although it remains unclear whether delivery of Ag to M cells only can guarantee the induction of effective immune responses. In this study, we evaluated the ability of an M cell-targeting ligand with adjuvant activity to induce immunity against ligand-fused Ag. We selected M cell-targeting ligands through biopanning of a phage display library against differentiated in vitro M-like cells and produced the recombinant Ags fused to the selected ligands using the model Ag. One of the selected peptide ligands, Co1, promoted the binding of ligand-fused Ag to mouse Peyer's patch M cells and human M-like cells that had been defined by binding with the M cell-specific and anti-GP2 Abs. In addition, Co1 ligand enhanced the uptake of fused Ag by immunogenic tissue in an ex vivo loop assay and in vivo oral administration experiments. After oral administration, the ligand-fused Ag enhanced immune responses against the fused Ag compared with those of the control Ag without ligand. In addition, this use of the ligand supported a skewed Th2-type immune response against the fused Ag. Collectively, these results suggest that the ligand selected through biopanning against cultured M-like cells could be used as an adjuvant for targeted Ag delivery into the mucosal immune system to enhance immune induction.
    The Journal of Immunology 10/2010; 185(10):5787-95. DOI:10.4049/jimmunol.0903184 · 5.36 Impact Factor
Show more