Article

Analysis of the clonal architecture of the human small intestinal epithelium establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations.

Histopathology Unit, London Research Institute, Cancer Research UK, London, UK.
The Journal of Pathology (Impact Factor: 7.59). 11/2008; 217(4):489-96. DOI: 10.1002/path.2502
Source: PubMed

ABSTRACT Little is known about the clonal structure or stem cell architecture of the human small intestinal crypt/villus unit, or how mutations spread and become fixed. Using mitochondrial DNA (mtDNA) mutations as a marker of clonal expansion of stem cell progeny, we aimed to provide answers to these questions. Enzyme histochemistry (for cytochrome c oxidase and succinate dehydrogenase) was performed on frozen sections of normal human duodenum. Laser-capture microdissected cells were taken from crypts/villi. The entire mitochondrial genome was amplified using a nested PCR protocol; sequencing identified mutations and immunohistochemistry demonstrated specific cell lineages. Cytochrome c oxidase-deficient small bowel crypts were observed within all sections: negative crypts contained the same clonal mutation and all differentiated epithelial lineages were present, indicating a common stem cell origin. Mixed crypts were also detected, confirming the existence of multiple stem cells. We observed crypts where Paneth cells were positive but the rest of the crypt was deficient. We have demonstrated patches of deficient crypts that shared a common mutation, suggesting that they have divided by fission. We have shown that all cells within a small intestinal crypt are derived from one common stem cell. Partially-mutated crypts revealed some novel features of Paneth cell biology, suggesting that either they are long-lived or a committed Paneth cell-specific long-lived progenitor was present. We have demonstrated that mutations are fixed in the small bowel by fission and this has important implications for adenoma development.

0 Bookmarks
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is a challenge to determine the dynamics of stem cells within human epithelial tissues such as colonic crypts. By tracking methylation patterns of nonexpressed genes, we have been able to determine how rapidly individual stem cells became dominant within a human colonic crypt. We also analyzed methylation patterns to study clonal expansion of entire crypts via crypt fission. Colonic mucosa was obtained from 9 patients who received surgery for colorectal cancer. The methylation patterns of Cardiac-specific homeobox, Myoblast determination protein 1, and Biglycan were examined within clonal cell populations, comprising either part of, or multiple adjacent, normal human colonic crypts. Clonality was demonstrated by following cytochrome c oxidase-deficient (CCO⁻) cells that shared an identical somatic point mutation in mitochondrial DNA. Methylation pattern diversity among CCO⁻ clones that occupied only part of a crypt was proportional to clone size; this allowed us to determine rates of clonal expansion. Analysis indicated a slow rate of niche succession within the crypt. The 2 arms of bifurcating crypts had distinct methylation patterns, indicating that fission can disrupt epigenetic records of crypt ancestry. Adjacent clonal CCO⁻ crypts usually had methylation patterns as dissimilar to one another as methylation patterns of 2 unrelated crypts. Mathematical models indicated that stem cell dynamics and epigenetic drift could account for observed dissimilarities in methylation patterns. Methylation patterns can be analyzed to determine the rates of recent clonal expansion of stem cells, but determination of clonality over many decades is restricted by epigenetic drift. We developed a technique to follow changes in intestinal stem cell dynamics in human epithelial tissues that might be used to study premalignant disease.
    Gastroenterology 12/2010; 140(4):1241-1250.e1-9. · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumors that develop in patients with Crohn's disease tend be multifocal, so field cancerization (the replacement of normal cells with nondysplastic but tumorigenic clones) might contribute to intestinal carcinogenesis. We investigated patterns of tumor development from pretumor intestinal cell clones. We performed genetic analyses of multiple areas of intestine from 10 patients with Crohn's disease and intestinal neoplasia. Two patients had multifocal neoplasia; longitudinal sections were collected from 3 patients. Individual crypts were microdissected and genotyped; clonal dependency analysis was used to determine the order and timing of mutations that led to tumor development. The same mutations in KRAS, CDKN2A(p16), and TP53 that were observed in neoplasias were also present in nontumor, nondysplastic, and dysplastic epithelium. In 2 patients, carcinogenic mutations were detected in nontumor epithelium 4 years before tumors developed. The same mutation (TP53 p.R248W) was detected at multiple sites along the entire length of the colon from 1 patient; it was the apparent founder mutation for synchronous tumors and multiple dysplastic areas. Disruption of TP53, CDKN2A, and KRAS were all seen as possible initial events in tumorigenesis; the sequence of mutations (the tumor development pathway) differed among lesions. Pretumor clones can grow extensively in the intestinal epithelium of patients with Crohn's disease. Segmental resections for neoplasia in patients with Crohn's disease might therefore leave residual pretumor disease, and dysplasia might be an unreliable biomarker for cancer risk. Characterization of the behavior of pretumor clones might be used to predict the development of intestinal neoplasia.
    Gastroenterology 12/2011; 142(4):855-864.e8. · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer arises as the result of a natural selection process among cells of the body, favoring lineages bearing somatic mutations that bestow them with a proliferative advantage. Of the thousands of mutations within a tumor, only a small fraction functionally drive its growth; the vast majority are mere passengers of minimal biological consequence. Yet the presence of any mutation, independent of its role in facilitating proliferation, tags a cell's clonal descendants in a manner that allows them to be distinguished from unrelated cells. Such markers of cell lineage can be used to identify the abnormal proliferative signature of neoplastic clonal evolution, even at a stage which predates morphologically recognizable dysplasia. This article focuses on molecular techniques for assessing cellular clonality in humans with an emphasis on how they may be used for early detection of tumorigenic processes. We discuss historical as well as contemporary approaches and consider ways in which powerful new genomic technologies might be harnessed to develop a future generation of early cancer diagnostics.
    Seminars in Cancer Biology 10/2010; 20(5):294-303. · 7.44 Impact Factor

Full-text (4 Sources)

View
22 Downloads
Available from
May 22, 2014