Article

Analysis of the clonal architecture of the human small intestinal epithelium establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations.

Histopathology Unit, London Research Institute, Cancer Research UK, London, UK.
The Journal of Pathology (Impact Factor: 7.59). 11/2008; 217(4):489-96. DOI: 10.1002/path.2502
Source: PubMed

ABSTRACT Little is known about the clonal structure or stem cell architecture of the human small intestinal crypt/villus unit, or how mutations spread and become fixed. Using mitochondrial DNA (mtDNA) mutations as a marker of clonal expansion of stem cell progeny, we aimed to provide answers to these questions. Enzyme histochemistry (for cytochrome c oxidase and succinate dehydrogenase) was performed on frozen sections of normal human duodenum. Laser-capture microdissected cells were taken from crypts/villi. The entire mitochondrial genome was amplified using a nested PCR protocol; sequencing identified mutations and immunohistochemistry demonstrated specific cell lineages. Cytochrome c oxidase-deficient small bowel crypts were observed within all sections: negative crypts contained the same clonal mutation and all differentiated epithelial lineages were present, indicating a common stem cell origin. Mixed crypts were also detected, confirming the existence of multiple stem cells. We observed crypts where Paneth cells were positive but the rest of the crypt was deficient. We have demonstrated patches of deficient crypts that shared a common mutation, suggesting that they have divided by fission. We have shown that all cells within a small intestinal crypt are derived from one common stem cell. Partially-mutated crypts revealed some novel features of Paneth cell biology, suggesting that either they are long-lived or a committed Paneth cell-specific long-lived progenitor was present. We have demonstrated that mutations are fixed in the small bowel by fission and this has important implications for adenoma development.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal stem cells (ISCs) and colorectal cancer (CRC) biology are tightly linked in many aspects. It is generally thought that ISCs are the cells of origin for a large proportion of CRCs and crucial ISC-associated signalling pathways are often affected in CRCs. Moreover, CRCs are thought to retain a cellular hierarchy that is reminiscent of the intestinal epithelium. Recent studies offer quantitative insights into the dynamics of ISC behaviour that govern homeostasis and thereby provide the necessary baseline parameters to begin to apply these analyses during the various stages of tumour development.
    Nature reviews. Cancer 06/2014; · 35.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A decline in the replicative and regenerative capacity of adult stem cell populations is a major contributor to the ageing process. Mitochondrial DNA (mtDNA) mutations clonally expand with age in human stem cell compartments including the colon, small intestine and stomach and result in respiratory chain deficiency. Studies in a mouse model with high levels of mtDNA mutations due to a defect in the proof-reading domain of the mtDNA polymerase γ (mtDNA mutator mice) have established causal relationships between the accumulation of mtDNA point mutations, stem cell dysfunction and premature ageing. These mtDNA mutator mice have also highlighted that the consequences of mtDNA mutations upon stem cells vary depending on the tissue. In this review we present evidence that these studies in mice are relevant to normal human stem cell ageing and we explore different hypotheses to explain the tissue specific consequences of mtDNA mutations. In addition, we emphasize the need for a comprehensive analysis of mtDNA mutations and their effects on cellular function in different ageing human stem cell populations. This article is protected by copyright. All rights reserved.
    Aging cell 12/2013; · 7.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a ‘‘functional’’ stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC�/+). Furthermore, we show that, in adenomatous crypts (APC�/�), there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.
    Cell Reports 08/2014; 8:1-8. · 7.21 Impact Factor

Full-text (4 Sources)

Download
37 Downloads
Available from
May 22, 2014