Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya.

Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK.
Analytica chimica acta (Impact Factor: 4.31). 03/2009; 634(1):75-82. DOI: 10.1016/j.aca.2008.11.071
Source: PubMed

ABSTRACT The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart.
    Mass Spectrometry Reviews 01/2011; 30(3):396-416. · 7.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cry1Ab is one of the most common Bacillus thuringiensis (Bt) proteins in genetically modified crops, which exhibits strong resistance against insect pests. In the present study, a sensitive and precise liquid chromatography stable isotope dilution multiple reaction monitoring tandem mass spectrometry (LC-SID-MRM-MS) assay was developed and validated to quantify the amount of Cry1Ab expression in transgenic maize leaves. The measurement of protein was converted to measurement of unique peptides to Cry1Ab protein. Two peptides unique to Cry1Ab were synthesized and labeled in H(2)(18)O to generate (18)O stable isotope peptides as internal standards. The validated method obtained superior specificity and good linearity. And the inter- and intra-day precision and accuracy for all samples were satisfactory. The results demonstrated Cry1Ab protein was 31.7 ± 4.1 μg g(-1) dry weight in Bt-176 transgenic maize leaves. It proved that the novel LC-SID-MRM-MS method was sensitive and selective to quantify Cry1Ab in the crude extract without time-consuming pre-separation or purification procedures.
    The Analyst 04/2012; 137(11):2699-705. · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mass spectrometry (MS) has become an essential technology for proteomics applications in biological sciences. Advances in this technique have been possible owing to improvements in MS instrumentation, new experimental strategies in sample preparation, and development of bioinformatics tools for data analyses. In recent years, complementary strategies to the classical two-dimensional gel electrophoresis approaches (2-DE) have been developed. These techniques are based on multidimensional peptide separation coupled to tandem MS (also referred as “second generation proteomics”), enabling protein expression analysis and high throughput protein identification studies. New methods such as Multidimensional Protein Identification Technology (MudPIT) and stable isotope labeling of protein/peptide samples (either by chemical, metabolic, or enzymatic methods), among others, are powerful tools for large-scale studies on characterization and expression of proteins in complex biological systems. Hence, these techniques can be very useful in the study of plant-pathogen interactions, aiding to detect and characterize both plant proteins concerned in defense reactions and pathogen proteins involved in pathogenicity and/or virulence. But these techniques have been implemented in these biological systems just recently. We will examine here how MS-based proteomics approaches are helping to better understand the multifaceted phenomena underlying plant-pathogen interactions.
    Current Proteomics 11/2010; 7(4):234-243. · 0.83 Impact Factor