Article

Osteopontin induces airway remodeling and lung fibroblast activation in a murine model of asthma.

Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.15). 02/2009; 41(3):290-6. DOI: 10.1165/rcmb.2008-0307OC
Source: PubMed

ABSTRACT Airway remodeling is a central feature of asthma; however, the mechanisms underlying its development have not been fully elucidated. We have demonstrated that osteopontin, an inflammatory cytokine and an extracellular matrix glycoprotein with profibrotic properties, is up-regulated in a murine model of allergen-induced airway remodeling. In the present study, we determined whether osteopontin plays a functional role in airway remodeling. Osteopontin (OPN)-deficient (OPN(-/-)) and wild-type mice were sensitized and exposed to inhaled ovalbumin (OVA) or saline for 5 weeks. Collagen production, peribronchial smooth muscle area, mucus-producing cell number, and bronchoalveolar cell counts were assessed. The functional behavior and phenotype of lung fibroblasts from OVA-treated OPN(-/-) and from wild-type mice were studied using ex vivo cultures. OVA-treated OPN(-/-) mice exhibited reduced lung collagen content, smooth muscle area, mucus-producing cells, and inflammatory cell accumulation as compared with wild-type mice. Reduced matrix metalloproteinase-2 activity and expression of transforming growth factor-beta1 and vascular endothelial growth factor were observed in OVA-treated OPN(-/-) mice. Lung fibroblasts from OVA-treated OPN(-/-) mice showed reduced proliferation, migration, collagen deposition, and alpha-smooth muscle actin expression in comparison with OVA-treated wild-type lung fibroblasts. Thus, OPN is key for the development of allergen-induced airway remodeling in mice. In response to allergen, OPN induces the switching of lung fibroblasts to a pro-fibrogenic myofibroblast phenotype.

0 Bookmarks
 · 
78 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High mobility group box 1 (HMGB1) is a nuclear protein that involves the binding with DNA and influences chromatin regulation and transcription. HMGB1 is also a cytokine that can activate monocytes and neutrophils involved in inflammation. In this study, we investigated the role of HMGB1 on cellular activation using human fibroblast cell line WI-38. After treatment with 1, 10, and 100 ng/mL of HMGB1 for 24 h, we did not find obviously cytotoxicity and cellular proliferation of WI-38 cells by MTT and BrdU incorporation assay, respectively. However, we found that treatment with 10 and 100 ng/mL of HMGB1 induced the differentiation of lung fibroblasts into myofibroblasts and myofibroblasts showed higher migration ability through activation of matrix metalloproteinase (MMP)-9 activation. To delineate the mechanism underlying HMGB1-induced cellular migration, we examined HMGB1-induced mitogen activated protein kinases (MAPKs), including extracellular signal related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen activated protein kinase (p38) phosphorylation, as well as nuclear factor (NF)-κB nuclear translocation. Using specific inhibitors and shRNAs of protein kinases, we observed that repression of ERK, JNK, p38, and NF-κB all inhibited HMGB1-induced cellular differentiation, migration and MMP-9 activation in WI-38 cells. In addition, knocking down of RAGE but not TLR2 and TLR4 by shRNAs attenuated HMGB1-induced myofibroblast differentiation and migration. In conclusion, our study demonstrated that HMGB1 induced lung fibroblasts' differentiation into myofibroblasts and enhanced cell migration through induction of MMP-9 activation and the RAGE-MAPK and NF-κB interaction signaling pathways. Targeting HMGB1 might be a potential therapeutic approach for alleviation of airway remodeling seen in chronic airway inflammatory diseases.
    PLoS ONE 02/2015; 10(2):e0116393. DOI:10.1371/journal.pone.0116393 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor. Copyright © 2015 Elsevier Ltd. All rights reserved.