Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse

Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Center, Houston, TX 77030, USA.
Human Molecular Genetics (Impact Factor: 6.68). 02/2009; 18(7):1252-65. DOI: 10.1093/hmg/ddp025
Source: PubMed

ABSTRACT Tuberous sclerosis complex (TSC) is an autosomal dominant, tumor predisposition disorder characterized by significant neurodevelopmental brain lesions, such as tubers and subependymal nodules. The neuropathology of TSC is often associated with seizures and intellectual disability. To learn about the developmental perturbations that lead to these brain lesions, we created a mouse model that selectively deletes the Tsc2 gene from radial glial progenitor cells in the developing cerebral cortex and hippocampus. These Tsc2 mutant mice were severely runted, developed post-natal megalencephaly and died between 3 and 4 weeks of age. Analysis of brain pathology demonstrated cortical and hippocampal lamination defects, hippocampal heterotopias, enlarged dysplastic neurons and glia, abnormal myelination and an astrocytosis. These histologic abnormalities were accompanied by activation of the mTORC1 pathway as assessed by increased phosphorylated S6 in brain lysates and tissue sections. Developmental analysis demonstrated that loss of Tsc2 increased the subventricular Tbr2-positive basal cell progenitor pool at the expense of early born Tbr1-positive post-mitotic neurons. These results establish the novel concept that loss of function of Tsc2 in radial glial progenitors is one initiating event in the development of TSC brain lesions as well as underscore the importance of Tsc2 in the regulation of neural progenitor pools. Given the similarities between the mouse and the human TSC lesions, this model will be useful in further understanding TSC brain pathophysiology, testing potential therapies and identifying other genetic pathways that are altered in TSC.


Available from: Sharon Win Way, May 30, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The genetic disease tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by loss of function mutations in either TSC1 (hamartin) or TSC2 (tuberin), which serve as negative regulators of mechanistic target of rapamycin complex 1 (mTORC1) activity. TSC patients exhibit developmental brain abnormalities and tuber formations that are associated with neuropsychological and neurocognitive impairments, seizures and premature death. Mechanistically, TSC1 and TSC2 loss of function mutations result in abnormally high mTORC1 activity. Thus, the development of a strategy to inhibit abnormally high mTORC1 activity may have therapeutic value in the treatment of TSC. mTORC1 is a master regulator of growth processes, and its activity can be reduced by withdrawal of growth factors, decreased energy availability, and by the immunosuppressant rapamycin. Recently, glutamine has been shown to alter mTORC1 activity in a TSC1-TSC2 independent manner in cells cultured under amino acid- and serum-deprived conditions. Since starvation culture conditions are not physiologically relevant, we examined if glutamine can regulate mTORC1 in non-deprived cells and in a murine model of TSC. Our results show that glutamine can reduce phosphorylation of S6 and S6 kinase, surrogate indicators of mTORC1 activity, in both deprived and non-deprived cells, although higher concentrations were required for non-deprived cultures. When administered orally to TSC2 knockout mice, glutamine reduced S6 phosphorylation in the brain and significantly prolonged their lifespan. Taken together, these studies suggest that glutamine supplementation can be used as a potential treatment for TSC. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 01/2015; 457(4). DOI:10.1016/j.bbrc.2015.01.039 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence has implicated perituberal, MRI-normal brain tissue as a possible source of seizures in tuberous sclerosis complex (TSC). Data on aberrant structural features in this area that may predispose to the initiation or progression of seizures are very limited. We used immunohistochemistry and confocal microscopy to compare epileptogenic, perituberal, MRI-normal tissue with cortical tubers. In every sample of epileptogenic, perituberal tissue, we found many abnormal cell types, including giant cells and cytomegalic neurons. The majority of giant cells were surrounded by morphologically abnormal astrocytes with long processes typical of interlaminar astrocytes. Perituberal giant cells and astrocytes together formed characteristic "microtubers". A parallel analysis of tubers showed that many contained astrocytes with features of both protoplasmic and gliotic cells. Microtubers represent a novel pathognomonic finding in TSC and may represent an elementary unit of cortical tubers. Microtubers and cytomegalic neurons in perituberal parenchyma may serve as the source of seizures in TSC and provide potential targets for therapeutic and surgical interventions in TSC.
    01/2015; 3(1):17. DOI:10.1186/s40478-015-0191-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease, best characterized by the formation of proliferative nodules that express smooth muscle and melanocytic antigens within the lung parenchyma, leading to progressive destruction of lung tissue and function. The pathological basis of LAM is associated with Tuberous Sclerosis Complex (TSC), a multi-system disorder marked by low-grade tumors in the brain, kidneys, heart, eyes, lung and skin, arising from inherited or spontaneous germ-line mutations in either of the TSC1 or TSC2 genes. LAM can develop either in a patient with TSC (TSC-LAM) or spontaneously (S-LAM), and it is clear that the majority of LAM lesions of both forms are characterized by an inactivating mutation in either TSC1 or TSC2, as in TSC. Despite this genetic commonality, there is considerable heterogeneity in the tumor spectrum of TSC and LAM patients, the basis for which is currently unknown. There is extensive clinical evidence to suggest that the cell of origin for LAM, as well as many of the TSC-associated tumors, is a neural crest cell, a highly migratory cell type with extensive multi-lineage potential. Here we explore the hypothesis that the types of tumors that develop and the tissues that are affected in TSC and LAM are dictated by the developmental timing of TSC gene mutations, which determines the identities of the affected cell types and the size of downstream populations that acquire a mutation. We further discuss the evidence to support a neural crest origin for LAM and TSC tumors, and propose approaches for generating humanized models of TSC and LAM that will allow cell of origin theories to be experimentally tested. Identifying the cell of origin and developing appropriate humanized models is necessary to truly understand LAM and TSC pathology and to establish effective and long-lasting therapeutic approaches for these patients.
    Frontiers in Cell and Developmental Biology 11/2014; 2:69. DOI:10.3389/fcell.2014.00069