Differential distribution of neuregulin in human brain and spinal fluid.

Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201 , USA.
Brain research (Impact Factor: 2.83). 12/2008; 1258:1-11. DOI: 10.1016/j.brainres.2008.12.047
Source: PubMed

ABSTRACT The neuregulins are a family of polypeptide factors implicated in a wide range of neurological and psychiatric disorders including multiple sclerosis, schizophrenia, and Alzheimer's disease. Many alternatively-spliced forms of the NRG1 gene are released as soluble factors that can diffuse to near and distant sites within the nervous system where they can accumulate through binding to highly specific heparan-sulfate proteoglycans in the extracellular matrix. Here we have determined the sites of synthesis and accumulation of heparin-binding neuregulin forms in human neocortex, white matter, cerebral spinal fluid, and serum by immunostaining and measurement of neuregulin activity. While neuregulin precursors are expressed predominately within cortical neurons, soluble neuregulin accumulates preferentially on the surface of white matter astrocytes. Consistently, neuregulin activity can be released from the extracellular matrix of human brain by protease treatment. Neuregulin activity is also detectable in human cerebral spinal fluid where its expression appears to be altered in neuronal disorders. While cerebral spinal fluid neuregulin levels were unaltered in patients with multiple sclerosis, they were slightly reduced in amyotrophic lateral sclerosis and Parkinson's disease (p<0.15), but significantly increased in Alzheimer's disease (p<0.01). While not detected in human serum, a novel neuregulin antagonist activity was identified in human serum that could have prevented its detection. These results suggest that human neuregulin is selectively targeted from cortical neurons to white matter extracellular matrix where it exists in steady-state equilibrium with cerebral spinal fluid where it has the potential to serve as a biological marker in human neuronal disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is the most common and most aggressive form of adult motor neuron (MN) degeneration. The cause of the disease is still unknown, but some protein mutations have been linked to the pathological process. Loss of upper and lower MNs results in progressive muscle paralysis and ultimately death due to respiratory failure. Although initially thought to derive from the selective loss of MNs, the pathogenic concept of non-cell-autonomous disease has come to the forefront for the contribution of glial cells in ALS, in particular microglia. Recent studies suggest that microglia may have a protective effect on MN in an early stage. Conversely, activated microglia contribute and enhance MN death by secreting neurotoxic factors, and impaired microglial function at the end-stage may instead accelerate disease progression. However, the nature of microglial-neuronal interactions that lead to MN degeneration remains elusive. We review the contribution of the neurodegenerative network in ALS pathology, with a special focus on each glial cell type from data obtained in the transgenic SOD1G93A rodents, the most widely used model. We further discuss the diverse roles of neuroinflammation and microglia phenotypes in the modulation of ALS pathology. We provide information on the processes associated with dysfunctional cell-cell communication and summarize findings on pathological cross-talk between neurons and astroglia, and neurons and microglia, as well as on the spread of pathogenic factors. We also highlight the relevance of neurovascular disruption and exosome trafficking to ALS pathology. The harmful and beneficial influences of NG2 cells, oligodendrocytes and Schwann cells will be discussed as well. Insights into the complex intercellular perturbations underlying ALS, including target identification, will enhance our efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression of this devastating disease.
    Frontiers in Cellular Neuroscience 05/2014; 8:117. DOI:10.3389/fncel.2014.00117 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood-brain barrier supplies brain tissues with nutrients and filters certain compounds from the brain back to the bloodstream. In several neurodegenerative diseases, including Parkinson's disease (PD), there are disruptions of the blood-brain barrier. Cerebrospinal fluid (CSF) has been widely investigated in PD and in other parkinsonian syndromes with the aim of establishing useful biomarkers for an accurate differential diagnosis among these syndromes. This review article summarizes the studies reported on CSF levels of many potential biomarkers of PD. The most consistent findings are: (a) the possible role of CSF urate on the progression of the disease; (b) the possible relations of CSF total tau and phosphotau protein with the progression of PD and with the preservation of cognitive function in PD patients; (c) the possible value of CSF beta-amyloid 1-42 as a useful marker of further cognitive decline in PD patients, and (d) the potential usefulness of CSF neurofilament (NFL) protein levels in the differential diagnosis between PD and other parkinsonian syndromes. Future multicentric, longitudinal, prospective studies with long-term follow-up and neuropathological confirmation would be useful in establishing appropriate biomarkers for PD.
    Frontiers in Cellular Neuroscience 11/2014; fncel.2014.00369. eCollection 2014.. DOI:10.3389/fncel.2014.00369 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently found neuregulin1 (NRG1) receptors are activated on microglia in the ventral horn of both ALS patients and SOD1 mice, suggesting a common pathological mechanism. However, it is not clear whether this signaling system also plays a role in patients with upper motor neuron (UMN) features, where patients show significant pathological changes in the corticospinal tracts (CSTs). Since the connection between upper and lower motor neuron (LMN) systems in ALS patients is not readily seen in the SOD1 mouse, we examined the lateral and ventral CSTs for NRG1 receptor activation and NRG1 expression in ALS patients with UMN symptoms compared to control patients with no evidence of neurodegenerative disease. We found that ALS patients with UMN symptoms showed increased microglial activation that colocalized with NRG1 receptor activation in the lateral and ventral CSTs. These same regions also showed increased NRG1 protein expression locally but no change in NRG1 mRNA. In conclusion, these data suggest that increased NRG1 protein accumulation could contribute to UMN disease through microglial activation in the CSTs.
    11/2013; 15(1-2). DOI:10.3109/21678421.2013.853802