Article

Benefits of caloric restriction on brain aging and related pathological States: understanding mechanisms to devise novel therapies.

Department of Biology, University of Bologna, Italy.
Current Medicinal Chemistry (Impact Factor: 3.72). 02/2009; 16(3):350-61. DOI: 10.2174/092986709787002637
Source: PubMed

ABSTRACT Long term caloric restriction is known to counteract aging and extend lifespan in several organisms from yeasts to mammals. Recent research has provided solid ground to the concept that limiting calorie intake slows down brain aging and protects from age-related neurodegenerative diseases. The present review summarizes the most relevant among these data and highlights some genetic and molecular mechanisms responsible for caloric restriction-related neuroprotection. To understand these mechanisms is important because this information makes them potential targets for therapeutic intervention aimed at reproducing the metabolic, genetic and molecular features responsible for the beneficial effect of caloric restriction. Most promising among these targets are neurotrophins, such as BDNF, transcription factors, such as FoxO and PPAR, anti-aging proteins, such as sirtuins, and caloric restriction mimetics acting on oxidative stress and energy metabolism. Notwithstanding the complexity of any therapeutic strategy aimed at reproducing the beneficial effects of caloric restriction, due to multiplicity of the cellular pathways involved in the responses, a great expansion of medicinal chemistry research in this field is expected in the next future.

0 Followers
 · 
47 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative damage is considered to be the primary cause of several aging associated disease pathologies. Cumulative oxidative damage tends to be pervasive among cellular macromolecules, impacting proteins, lipids, RNA and DNA of cells. At a systemic level, events subsequent to oxidative damage induce an inflammatory response to sites of oxidative damage, often contributing to additional oxidative stress. At a cellular level, oxidative damage to mitochondria results in acidification of the cytoplasm and release of cytochrome c, causing apoptosis. This review summarizes findings in the literature on oxidative stress and consequent damage on cells and tissues of the cardiovascular system and the central nervous system, with a focus on aging-related diseases that have well-documented evidence of oxidative damage in initiation and/or progression of the disease. The current understanding of the cellular mechanisms with a focus on macromolecular damage, impacted cellular pathways and gross morphological changes associated with oxidative damage is also reviewed. Additionally, the impact of calorific restriction with its profound impact on cardiovascular and neuronal aging is addressed.
    International Journal of Molecular Sciences 09/2013; 14(9):17897-925. DOI:10.3390/ijms140917897 · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative diseases are amongst the leading causes of worldwide disability, morbidity and decreased quality of life. They are increasingly associated with the concomitant worldwide epidemic of obesity. Although the prevalence of both AD and PD continue to rise, the available treatment strategies to combat these conditions remain ineffective against an increase in global neurodegenerative risk factors. There is now epidemiological and mechanistic evidence associating obesity and its related disorders of impaired glucose homeostasis, type 2 diabetes mellitus and metabolic syndrome with both AD and PD. Here we describe the clinical and molecular relationship between obesity and neurodegenerative disease. Secondly we outline the protective role of weight loss, metabolic and caloric modifying interventions in the context of AD and PD. We conclude that the application of caloric restriction through dietary changes, bariatric (metabolic) surgery and gut hormone therapy may offer novel therapeutic strategies against neurodegenerative disorders. Investigating the protective mechanisms of weight loss, metabolic and caloric modifying interventions can increase our understanding of these major public health diseases and their management.
    Metabolic Brain Disease 05/2013; 28(3). DOI:10.1007/s11011-013-9412-4 · 2.40 Impact Factor
  • European Psychiatry 01/2011; 26:1516-1516. DOI:10.1016/S0924-9338(11)73220-5 · 3.21 Impact Factor