Article

gamma-Secretase Inhibitors Abrogate Oxaliplatin-Induced Activation of the Notch-1 Signaling Pathway in Colon Cancer Cells Resulting in Enhanced Chemosensitivity

Department of Medicine, Division of Solid Tumor Oncology, Laboratory of New Drug Development, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
Cancer Research (Impact Factor: 9.28). 02/2009; 69(2):573-82. DOI: 10.1158/0008-5472.CAN-08-2088
Source: PubMed

ABSTRACT Because Notch signaling is implicated in colon cancer tumorigenesis and protects cells from apoptosis by inducing prosurvival targets, it was hypothesized that inhibition of Notch signaling with gamma-secretase inhibitors (GSI) may enhance the chemosensitivity of colon cancer cells. We first show that the Notch-1 receptor, as well as its downstream target Hes-1, is up-regulated with colon cancer progression, similar to other genes involved in chemoresistance. We then report that chemotherapy induces Notch-1, as oxaliplatin, 5-fluorouracil (5-FU), or SN-38 (the active metabolite of irinotecan) induced Notch-1 intracellular domain (NICD) protein and activated Hes-1. Induction of NICD by oxaliplatin was caused by an increase in the activity and expression of gamma-secretase complex, as suppression of the protein subunit nicastrin with small interfering RNA (siRNA) prevented NICD induction after oxaliplatin. Subsequent inhibition of Notch-1 signaling with a sulfonamide GSI (GSI34) prevented the induction of NICD by chemotherapy and blunted Hes-1 activation. Blocking the activation of Notch signaling with GSI34 sensitized cells to chemotherapy and was synergistic with oxaliplatin, 5-FU, and SN-38. This chemosensitization was mediated by Notch-1, as inhibition of Notch-1 with siRNA enhanced chemosensitivity whereas overexpression of NICD increased chemoresistance. Down-regulation of Notch signaling also prevented the induction of prosurvival pathways, most notably phosphoinositide kinase-3/Akt, after oxaliplatin. In summary, colon cancer cells may up-regulate Notch-1 as a protective mechanism in response to chemotherapy. Therefore, combining GSIs with chemotherapy may represent a novel approach for treating metastatic colon cancers by mitigating the development of chemoresistance.

0 Followers
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) is the second leading cause of cancer death related mortality with 1.2 million new cases diagnosed annually worldwide. Despite remarkable advances in the treatment of resectable CRC, advanced disease that recurs following initial two lines of chemotherapy, remains incurable. Targeted therapies using a single agent or in combination with other drugs have been tested in a number of clinical trials, with only moderate improvement. Here we present preliminary findings of improved overall survival (OS) using a combination of sodium phenylbutyrate with various targeted and chemotherapeutic agents in stage IV CRC patients who had failed at least two lines of chemotherapy. Results suggest a strategy of simultaneous interruption of signal transduction involving EGFR (VEGF) KRAS-ERK and PI3K-AKT pathways and interference with cell cycle, cancer cell metabolism, maintenance of cancerous stem cells, and promotion of apoptosis. In a group of 15 patients, median OS was higher compared to other third-line therapies (14.7 months compared to between 4.8 and 9.5 months in other studies). Given the understanding that our findings are preliminary, we propose the validation of our initial results using a well-designed phase I/II trial in recurrent advanced colorectal cancer.
    Journal of Cancer Therapy 01/2014; 5:1270-1288. DOI:10.4236/jct.2014.513128
  • [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling is altered in many cancers. Our previous findings in primary pediatric ependymoma support a role for NOTCH in glial oncogenesis. The present study evaluates the γ-secretase inhibitor RO4929097 in glial tumor models. The expression of Notch pathway genes was evaluated using real-time RT-PCR in 21 ependymoma and glioma models. NOTCH1 mutations were analyzed by DNA sequencing. RO4929097 activity was evaluated in vitro and in vivo, as a single agent and in combination, in glioma and ependymoma models. Notch pathway genes are overexpressed in ependymomas and gliomas along with FBXW7 downregulation. NOTCH1 mutations in the TAD domain were observed in 20% (2/10) of ependymoma primary cultures. Blocking the Notch pathway with the γ-secretase inhibitor RO4929097 reduced cell density and viability in ependymoma short-term cultures. When combined with chemotherapeutic agents, RO4929097 enhanced temozolomide effects in ependymoma short-term cultures and potentiated the cytotoxicity of etoposide, cisplatinum, and temozolomide in glioma cells. RO4929097, in combined treatment with mTOR inhibition, potentiated cytotoxicity in vitro, but did not enhance antitumor effects in vivo. In contrast, RO4929097 enhanced irradiation effects in glioma and ependymoma xenografts and showed tumor growth inhibition in advanced-stage IGRG121 glioblastoma xenografts. RO4929097-mediated effects were independent of NOTCH1 mutation status or expression levels, but associated with low IL-6 levels. In established glial tumor models, NOTCH inhibition had limited effects as a single agent, but enhanced efficacy when combined with DNA-interfering agents. These preclinical data need to be considered for further clinical development of NOTCH inhibitors in glial tumors.
    Anti-Cancer Drugs 12/2014; DOI:10.1097/CAD.0000000000000190 · 1.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hairy enhancer of split-1 (HES1) is a transcriptional target of the Notch pathway, and a high level of HES1 is regarded as a marker of activated Notch. The aim of the study was to investigate the role of HES1 in colorectal cancer progression. We used tissue microarrays to analyze the expression and clinical significance of HES1 in 320 colorectal cancer samples. Stable overexpression and knockdown of HES1 were established in three colorectal cancer cell (CRC) lines (RKO, HCT8 and LOVO). We investigated the differentially expressed genes and enriched pathways in HES1 overexpressing CRC cells by gene expression profiling. Also, the role of HES1 in invasion and migration were examined in vitro and in vivo. We found that high expression of HES1 was significantly correlated with distal metastasis (P = 0.037) at diagnosis, and HES1 could serve as an unfavorable prognostic factor for colorectal cancer patients (P = 0.034). Gene expression profiling and pathway enrichment analysis revealed that HES1 was related to cellular adherens junction loss. In addition, we showed that HES1 overexpression lead to depressed E-cadherin, and elevated N-cadherin, vimentin and Twist-1 levels. Functionally, HES1 enhanced invasiveness and metastasis of CRC cells. HES1 promotes cancer metastasis via inducing epithelial mesenchymal transition and serves as a poor prognosis factor of colorectal cancer patients.

Preview

Download
2 Downloads
Available from

Similar Publications