Article

Detection of Illicium anisatum as adulterant of Illicium verum.

National Center for Natural Products Research and Research Institute of Pharmaceutical Sciences, Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
Planta Medica (Impact Factor: 2.35). 02/2009; 75(4):392-5. DOI: 10.1055/s-0028-1112219
Source: PubMed

ABSTRACT Chinese Star anise, Illicium verum Hook, is a well known spice in many cultures and has also been used to treat infant colic. Recent publications report that Chinese Star anise might be adulterated with the toxic Japanese Star anise, Illicium anisatum L. We have developed a molecular method that helps with the detection of I. anisatum as adulterant of I. verum. We PCR-amplified the internal transcribed spacer (ITS) region and analyzed it with the endonucleases PSTI and BFMI. Based on fragment length polymorphisms (RFLP), we were able to detect and distinguish between I. anisatum and other Illicium species in powdered samples.

0 Bookmarks
 · 
258 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ingestion of products containing Chinese star anise (Illicium verum) fruits contaminated or adulterated with Japanese star anise (Illicium anisatum) fruits can cause poisoning due to the neurotoxin anisatin that is present in Japanese star anise. Thus a rapid, simple and unambiguous distinction between the morphologically similar Chinese star anise and toxic Japanese star anise fruits is important for guaranteeing food safety. After adding ∼200μL of methanol to one star anise carpel placed at 7-10mm from the inlet of a mass spectrometer and applying a potential of ∼5kV to the carpel, an electrospray is created. The formation of the electrospray is immediate, robust and stable and lasts for at least a minute. The presence or absence of anisatin could be monitored by orbitrap high resolution mass spectrometry (HRMS) in negative mode by observing the [M-H](-) ion at m/z 327.1074 (C15H19O8) or in positive mode the [M+K](+) ion at m/z 367.079 (C15H20KO8). Several parameters like wetting solvent, voltage, distance and set-up were optimised. The anisatin signal was ∼250 times higher in Japanese than in Chinese star anise. An existing Direct Analysis in Real Time (DART) HRMS for anisatin was used for benchmarking. Alternatively a linear ion trap mass spectrometer could be used in negative selective reaction monitoring (SRM) mode albeit with lower selectivity than the HRMS method. The transition of the [M-H](-) ion at m/z 327 to the fragment at m/z 265 was monitored. Direct plant spray and DART ionisation are both robust and provided the same yes/no answer in seconds without any prior sample preparation. Compared with the DART-HRMS procedure, the direct plant spray method is simpler in terms of equipment, yields a more stable signal, does not require heating of the sample but is slightly less selective and requires working with high voltages.
    Journal of Chromatography A 07/2013; · 4.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fruit of Illicium verum Hook. f. (Chinese star anise) has long been used in traditional Chinese medicine and food industry with the actions of dispelling cold, regulating the flow of Qi and relieving pain. A bibliographic investigation was carried out by analyzing recognized books including Chinese herbal classic, and worldwide accepted scientific databases (Pubmed, SciFinder, Scopus and Web of Science) were searched for the available information on I. verum. I. verum is an aromatic evergreen tree of the family Illiciaceae. It is sometimes contaminated with highly toxic Japanese star anise (I. anisatum L.) and poisonous star anise (I. lanceolatum A. C. Smith), which contain several neurotoxic sesquiterpenes. Traditional uses of I. verum are recorded throughout Asia and Northern America, where it has been used for more than 10 types of disorders. Numerous compounds including volatiles, seco-prezizaane-type sesquiterpenes, phenylpropanoids, lignans, flavonoids and other constituents have been identified from I. verum. Modern pharmacology studies demonstrated that its crude extracts and active compounds possess wide pharmacological actions, especially in antimicrobial, antioxidant, insecticidal, analgesic, sedative and convulsive activities. In addition, it is the major source of shikimic acid, a primary ingredient in the antiflu drug (Tamiflu). This review summarizes the up-to-date and comprehensive information concerning the botany, traditional use, phytochemistry and pharmacology of I. verum together with the toxicology, and discusses the possible trend and scope for future research of I. verum.
    Journal of ethnopharmacology 06/2011; 136(1):10-20. · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Illicium verum (Chinese star anise) dried fruit is popularly used as a remedy to treat infant colic. However, instances of life-threatening adverse events in infants have been recorded after use, in some cases due to substitution and/or adulteration of I. verum with Illicium anisatum (Japanese star anise), which is toxic. It is evident that rapid and efficient quality control methods are of utmost importance to prevent re-occurrence of such dire consequences. The potential of short wave infrared (SWIR) hyperspectral imaging and image analysis as a rapid quality control method to distinguish between I. anisatum and I. verum whole dried fruit was investigated. Images were acquired using a sisuChema SWIR hyperspectral pushbroom imaging system with a spectral range of 920-2514nm. Principal component analysis (PCA) was applied to the images to reduce the high dimensionality of the data, remove unwanted background and to visualise the data. A classification model with 4 principal components and an R(2)X_cum of 0.84 and R(2)Y_cum of 0.81 was developed for the 2 species using partial least squares discriminant analysis (PLS-DA). The model was subsequently used to accurately predict the identity of I. anisatum (98.42%) and I. verum (97.85%) introduced into the model as an external dataset. The results show that SWIR hyperspectral imaging is an objective and non-destructive quality control method that can be successfully used to identify whole dried fruit of I. anisatum and I. verum. In addition, this method has the potential to detect I. anisatum whole dried fruits within large batches of I. verum through upscaling to a conveyor belt system.
    Journal of pharmaceutical and biomedical analysis 12/2012; 75C:207-213. · 2.45 Impact Factor

Full-text (2 Sources)

View
116 Downloads
Available from
May 29, 2014