The relation between the application angle of spinal manipulative therapy (SMT) and resultant vertebral accelerations in an in situ porcine model

University of Alberta, Faculty of Rehabilitation Medicine, 3-44 Corbett Hall, Edmonton, Alberta, Canada T6G 2G4.
Manual therapy (Impact Factor: 1.71). 02/2009; 14(5):480-3. DOI: 10.1016/j.math.2008.11.001
Source: PubMed


It has been hypothesized that the posterior tissues of the spine are frictionless and therefore allow only the normal force component of spinal manipulative therapy (SMT) to pass to underlying vertebrae. Given this assumption, vertebrae could not be moved in practitioner-defined directions by altering the application angle of SMT. To investigate this possibility, porcine lumbar spines were excised and then SMT applied at 90 degrees to the posterior tissues of the target vertebra. A standard curve was constructed of increasing SMT force versus vertebral acceleration. SMT forces were then applied at 60 degrees and 120 degrees and the resulting accelerations substituted into the standard curve to obtain the transmitted force. Results showed that vertebral accelerations were greatest at a 90 degrees SMT application angle and decreased in all axes at application angles not equa l90 degrees . The average decrease in transmitted force using application angles of 60 degrees and 120 degrees was within 5% of the predicted absolute value. In this model, SMT applied at a non-normal angle does not increase vertebral acceleration in that same direction, but acts to reduce transmitted force. This work provides justification for future studies in less available human cadavers. It is not yet known if variations in SMT application angle have relevance to clinical outcomes or patient safety.

22 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For centuries, techniques used to manipulate joints in the spine have been passed down from one generation of manipulators to the next. Today, spinal manipulation is in the curious position that positive clinical effects have now been demonstrated, yet the theoretical base underpinning every aspect of its use is still underdeveloped. An important question is posed in this masterclass: why do spinal manipulation techniques take the form they do? From the available literature, two factors appear to provide an answer: 1. Action of a force upon vertebrae. Any 'direct' spinal manipulation technique requires that the patient be orientated in such a way that force is applied perpendicular to the overlying skin surface so as to act upon the vertebrae beneath. If the vertebral motion produced by 'directly' applied force is insufficient to produce the desired effect (e.g. cavitation), then force must be applied 'indirectly', often through remote body segments such as the head, thorax, abdomen, pelvis, and extremities. 2. Spinal segment morphology. A new hypothesis is presented. Spinal manipulation techniques exploit the morphology of vertebrae by inducing rotation at a spinal segment, about an axis that is always parallel to the articular surfaces of the constituent zygapophysial joints. In doing so, the articular surfaces of one zygapophysial joint appose to the point of contact, resulting in migration of the axis of rotation towards these contacting surfaces, and in turn this facilitates gapping of the other (target) zygapophysial joint. Other variations in the form of spinal manipulation techniques are likely to depend upon the personal style and individual choices of the practitioner.
    Manual therapy 06/2009; 15(3):212-9. DOI:10.1016/j.math.2009.03.006 · 1.71 Impact Factor

  • Free Radical Biology and Medicine 01/2010; 49. DOI:10.1016/j.freeradbiomed.2010.10.413 · 5.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serial dissection of porcine motion segments during robotic control of vertebral kinematics. To identify which spinal tissues are loaded in response to manual therapy (manipulation and mobilization) and to what magnitude. Various theoretical constructs attempt to explain how manual therapies load specific spinal tissues. By using a parallel robot to control vertebral kinematics during serial dissection, it is possible to quantify the loads experienced by discrete spinal tissues undergoing common therapeutic procedures such as manual therapy. In 9 porcine cadavers, manual therapy was provided to L3 and the kinematic response of L3-L4 recorded. The exact kinematic trajectory experienced by L3-L4 in response to manual therapy was then replayed to the isolated segment by a parallel robot equipped with a 6-axis load cell. Discrete spinal tissues were then removed and the kinematic pathway replayed. The change in forces and moments following tissue removal were considered to be those applied to that specific tissue by manual therapy. In this study, both manual therapies affected spinal tissues. The intervertebral disc experienced the greatest forces and moments arising from both manipulation and mobilization. This study is the first to identify which tissues are loaded in response to manual therapy. The observation that manual therapy loads some tissues to a much greater magnitude than others offers a possible explanation for its modest treatment effect; only conditions involving these tissues may be influenced by manual therapy. Future studies are planned to determine if manual therapy can be altered to target (or avoid) specific spinal tissues.
    Spine 09/2010; 35(22):1983-90. DOI:10.1097/BRS.0b013e3181ddd0a3 · 2.30 Impact Factor
Show more